
Programming Reference Guide

REFERENCE GUIDE
RG-0006-01-EN 1.2 ENGLISH

Important User Information
Liability
Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks SA of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks SA, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks SA. HMS Industrial Networks SA assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks SA will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks SA cannot as-
sume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights
HMS Industrial Networks SA has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications in
the USA and other countries.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Table of Contents Page

1 Preface ... 5
1.1 About This Document...5
1.2 Document history...5
1.3 Related Documents ...5
1.4 Trademark Information ...5

2 BASIC language definition ... 6
2.1 Introduction ...6
2.2 Program Flow ..6
2.3 Function.. 11
2.4 Label ..15
2.5 Operators Priority...16
2.6 Types of Variable ...16
2.7 TagName Variable..19
2.8 Tag Access..20
2.9 Limitation of the BASIC ..20

3 List of Keywords ... 21
3.1 # (bit extraction operator)..21
3.2 // (comment) ..21
3.3 ABS ..22
3.4 ALMACK...22
3.5 ALSTAT...22
3.6 AND..23
3.7 ASCII26 ..23
3.8 BIN$...23
3.9 BNOT ...24
3.10 CFGSAVE...24
3.11 CHR$..24
3.12 CLEAR..25
3.13 CLOSE ...25
3.14 CLS ..25
3.15 DAY ..25
3.16 DEC..26
3.17 DIM...26
3.18 DMSYNC ..27
3.19 DOW...27
3.20 DOY ...27
3.21 DYNDNS...28
3.22 END..28

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Table of Contents

3.23 EOF..29
3.24 ERASE ...29
3.25 FCNV..30
3.26 FOR - NEXT - STEP...33
3.27 GET..34
3.28 GETFTP..37
3.29 GETHTTP ...39
3.30 GETIO ..40
3.31 GETSYS, SETSYS ..40
3.32 GO ...48
3.33 GOSUB - RETURN..48
3.34 GOTO...49
3.35 HALT ..49
3.36 HEX$..49
3.37 HTTPX..50
3.38 IF, THEN, ELSE, ENDIF ...52
3.39 INSTR...53
3.40 INT ...55
3.41 IOMOD ...55
3.42 IORCV ..56
3.43 IOSEND..57
3.44 LEN ..58
3.45 LOGEVENT...58
3.46 LOGGROUPIO..59
3.47 LOGIO ..59
3.48 LTRIM...60
3.49 MEMORY..60
3.50 MOD...60
3.51 MONTH ..61
3.52 MQTT ...61
3.53 NOT..68
3.54 NTPSYNC...69
3.55 ONxxxxxx..69
3.56 OPEN ...77
3.57 OR..82
3.58 PI..82
3.59 PRINT – AT ...83
3.60 PRINT # ..83
3.61 PUT ..85
3.62 PUTFTP..87
3.63 PUTHTTP ...88
3.64 REBOOT...90
3.65 REM ...90

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Table of Contents

3.66 RENAME ..90
3.67 RTRIM ..91
3.68 SENDMAIL..91
3.69 SENDSMS ..92
3.70 SENDTRAP...93
3.71 SETIO...94
3.72 SETTIME ..94
3.73 SFMT..95
3.74 SGN ...98
3.75 SQRT ...98
3.76 STR$..99
3.77 TIME$...99
3.78 TGET..99
3.79 TSET .. 100
3.80 TYPE$.. 100
3.81 VAL... 101
3.82 WAIT .. 101
3.83 WOY... 103
3.84 WRITEEBD ... 103
3.85 XOR ... 104

4 Debugging...105

5 BASIC Error Codes...106

6 Configuration Fields...107
6.1 SYS .. 107
6.2 COM... 112
6.3 TAG .. 123
6.4 USER ... 126

This page intentionally left blank

Preface 5 (128)

1 Preface
1.1 About This Document

This document describes the BASIC scripting and all its possibilities when running on an eWON
Flexy.

This document is an evolution of the former RG-002: Programming Reference Guide. The con-
tent written in this document can be applied only on eWON Flexy running a firmware version
higher or equal to v12.2s0.

Other eWON devices compatible with BASIC (eWON CD and eWON Flexy) must refer to:

• Firmware of the device <= v8.1s4 : RG-002: Programming Reference Guide

• v8.1s4 > firmware of the device < v12.2s0 : RG-0006–00: Programming Reference Guide

For additional related documentation and file downloads, please visit developer.ewon.biz.

1.2 Document history
Version Date Description
1.0 2016-05-24 ADDED: New version of RG-0002
1.1 2016-20-12 CHANGED: Template

ADDED: MQTT Command
ADDED: LOGGROUPIO

1.2 2018-05-03 CHANGED: Typo in the ONDATE function
CHANGED: COMCFG parameters
CHANGED: Overall typo, examples corrections, ...

1.3 Related Documents
Document Author Document ID

1.4 Trademark Information
eWON® is a registered trademark of HMS Industrial Networks SA. All other trademarks men-
tioned in this document are the property of their respective holders.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

https://developer.ewon.biz

BASIC language definition 6 (128)

2 BASIC language definition
2.1 Introduction

The program of the eWON is based on syntax close to the BASIC, with many specific
extensions.

BASIC scripting is possible thanks to the BASIC IDE available on the web interface of the
device.

In this document, the following convention (if not indicated otherwise) is used to represent the
parameters:

Parameter Type
E1, E2 Integer
S1, S2 String
F1, F2 Real
CA Character (if string passed, first char is evaluated)

2.2 Program Flow
It is important to understand how the device executes its program!

There's a difference between the record and the execution of the program within the device: the
unit has a program task that extracts BASIC requests from a queue and executes those
requests.

A request can be:

• A single command:myVar=1

• A branch to a label: goto myLabel

• A list of commands such as a program block

In the first case, the command is executed then the BASIC task is ready to execute the next
request.

In the second case, the BASIC task goes to labelmyLabel and executes what’s inside until the
END command appears or until an error occurs.

Suppose the device hasn’t any program but an Init Section, a Cyclic Section and a custom sec-
tion labeled myNew Section are created:

Init Section
CLS
myVar = 0

Cyclic Section
FOR V% = 0 TO 10

myVar = myVar + 1
NEXT V%
PRINT myVar

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 7 (128)

myNew Section
myNew Section:
myVar = 0
PRINT "myVar is reset"

If the corresponding program.bas file is downloaded using an FTP client, the following code will
be obtained:

Rem --- eWON start section: Cyclic Section
eWON_cyclic_section:
Rem --- eWON user (start)
FOR V% = 0 TO 10

myVar = myVar + 1
NEXT V%
PRINT myVar
Rem --- eWON user (end)
End
Rem --- eWON end section: Cyclic Section
Rem --- eWON start section: Init Section
eWON_init_section:
Rem --- eWON user (start)
CLS
myVar = 0
Rem --- eWON user (end)
End
Rem --- eWON end section: Init Section
Rem --- eWON start section: myNew Section
Rem --- eWON user (start)
mynew_section:
myVar = 0
PRINT "myVar is reset"
Rem --- eWON user (end)
End
Rem --- eWON end section: myNew Section

The code written in the BASIC IDE is displayed, but the device also added some remarks and
labels to allow the modification and provide program flow control.

The IDE has added an End statement at the end of each section to prevent the program from
continuing to the next section. The example also shows that each label is global to the whole
program and should not be duplicated.

There is not correlation between the name of the section and the label used in that section.

The section name is only a method to organize program listing during modification. It can con-
tain spaces while the program labels can not.

When the program starts (i.e: by clicking the RUN button from the top menu of the IDE), the de-
vice posts 2 commands in the queue:

BASIC Queue – 1
Queue position Content Type
...
3
2 goto ewon_cyclic_section CYCLIC_SECTION
1 goto ewon_init_section INIT_SECTION

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 8 (128)

The BASIC task of the device will read the request, from the queue, that has the lowest index
and will execute it until an End is found or until an error occurs.

The first command is GOTO ewon_init_section. The following lines will be executed:

Rem --- eWON start section: Init Section
eWON_init_section:
Rem --- eWON user (start)
CLS
myVar = 0
Rem --- eWON user (end)
End
Rem --- eWON end section: Init Section

The End command on the line before last will end the program and the BASIC task will check in
the queue for a new request:

BASIC Queue – 2
Queue position Content Type
...
3
2
1 goto ewon_cyclic_section CYCLIC_SECTION

The first available command is goto ewon_cyclic_section, it will also be executed until the End
command is found. When this End is executed the BASIC task will detect that the section that
just run was a CYCLIC_SECTION and will then post a new goto ewon_cyclic_section request
in the queue.

This explains how the program is continuously executed (and forever) as long as the BASIC is
in RUNmode.

There are a number of actions that can be programmed to occur upon event, like ONTIMER:

TSET 1,10
ONTIMER 1, "goto myLabel"

If the above lines were in the Init Section, it would start a timer #1 with an interval of 10 seconds
and program a goto myLabel request when timer #1 elapses.

When the ONTIMER occurs, the device posts the goto myLabel request in the BASIC queue.

BASIC Queue – 3
Queue position Content Type
...
3
2 goto myLabel
1 goto ewon_cyclic_section CYCLIC_SECTION

When the CYCLIC SECTION will be finished, the timer request will be extracted from the queue
and then executed. If the CYCLIC SECTION takes a long time to execute, then the timer can
elapse more than once during the execution of the CYCLIC SECTION resulting in more timer
action to be posted in the queue:

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 9 (128)

BASIC Queue – 4
Queue pos ition Content Type
...
5
4 goto myLabel
3 goto myLabel
2 goto myLabel
1 goto ewon_cyclic_section CYCLIC_SECTION

The BASIC queue can hold more than 100 requests but if TIMER goes too fast or if other events
such as ONCHANGE are used then the queue can overflow. In that case, an error is logged in
the events file and requests are dropped.

The ONTIMER request is not executed with the exact precision of a timer, depending on the
current load of the BASIC when the timer elapses.

When an ASP block needs to be executed because the device must deliver a web page to a cli-
ent, the ASP block is also put in the queue.

As an example, if an ASP block contains the following lines:

FromWebVar = Var1!
PRINT #0;TIME$

Then the queue will reflect the following:

BASIC Queue – 5
Queue pos Content Type
...
3 FromWebVar = Var1!

PRINT #0;TIME$
2 goto MyLabel
1 goto ewon_cyclic_section CYCLIC_SECTION

If a request in the queue contains more than 1 BASIC line, the block is appended to the end of
the program as a temporary section:

ewon_one_shot_section:
fromWebVar = Var1
PRINT #0;TIME$
END

The temporary label is called goto ewon_one_shot_section. When the execution is done, the
temporary section is deleted from the program.

As a consequence, the following applies:

• Any global variable or label can be used in remote.bas file or ASP blocks; subroutines can
be called in the ASP blocks and can share common variables with the program.

• If a section is being executed when the ASP section is posted, all the requests in the queue
must first be executed. This may have an impact on the responsiveness of the website
when ASP is used.

• When using ASP; it is recommended to group the blocks in order to avoid posting too many
different requests in the queue. By doing so, queue extraction and BASIC context switches
will be reduced.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 10 (128)

• If a big amount of or long ASP requests are posted to the BASIC via the web server, it may
slow down normal execution of the BASIC.

• Sections are never interrupted by other sections: this is always true! When a program se-
quence is written, it will never be broken by another execution (of timer, web request or
anything else).

2.2.1 Character String
A character string can contain any set of characters. When creating an alphanumeric string with
a quoted string the ‘ ‘ or “ “ delimiter must be used.

A character string can be stored either in an alphanumeric type variable or in an alphanumeric
variable array.

Example of 3 valid strings
"abcd"
’abdc’
"abc‘def’ ghi "

2.2.2 Command
A command is an instruction that has none or several comma (,) separated parameters.

GOTO Label
PRINT
CLS
SETSYS TAG, "name","Power"
SETSYS TAG, "SAVE"

There are 2 exceptions to the comma separator: PRINTand PUT.

2.2.3 Integer
An integer is a number between -2147483648 and +2147483647 which be stored in an integer
variable.

When a parameter of integer type is specified for a function or a command and this variable is
actually of real type, the device converts automatically the real value to an integer value.

When the expected value is of integer type and the transmitted value is a character string, the
device generates an error.

2.2.4 Real
A real number is a number in floating point representation of which value is between
-3.4028236 10E38 and +3.4028234 10E38. Value of this type can be stored in a variable of real
type or in an array of reals.

A real number has approximately 7 significant digits. This means that conversion of a number
with more than 7 significant digits to real will lead to a lost in accuracy.

When a function expects a real number and an integer is transmitted, the device converts auto-
matically the integer into a real value.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 11 (128)

If the function awaits a real and a character string is passed, the eWON generates an error.

The device uses IEEE 754 single precision representation (32 bits). The fraction is coded on 23
bits, which represents about 7 significant digits. But on the web interface of the device, the val-
ues of the tags are displayed only with 6 digits. If a tag is used in BASIC scripting, the 7 signifi-
cant digits are then applied.

2.2.5 Alphanumeric Character
An alphanumeric character is one of the ASCII characters. Each ASCII character has a numeri-
cal representation between 0 and 255.

The ASCII function returns the ASCII code of a character, and the CHR$ function converts the
ASCII code to a string of a single character.

2.3 Function
A function is a BASIC command having none or several parameters and returning a result that
can be of integer, real or string type.

ASCII "HOP"
GETSYS TAG, "NAME"
PI

2.3.1 Function Declaration
To declare a function, 2 keywords are needed:

• FUNCTION
It is used to start the function definition and is followed on the same line by the function
name which length must be greater than one character.

• ENDFN
It is used to end the function definition.

Example 1: How to Declare a Function

FUNCTION my_function // function definition begins
PRINT "my_string"
ENDFN

2.3.2 Function return value
The function return value is specified by using the following function name convention:

• If the function returns an integer: Function my_function%

• If the function returns a string: Function my_function$

• If the function returns a float: Function my_function

To specify the return value of a function, an implicit variable is created automatically based on
the function name. When the function exits, the return value is the last value of this variable.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 12 (128)

Example 2: Return Value of a Function

FUNCTION my_function
$my_function = 1
$my_function = $my_function + 1
PRINT "my_string"

ENDFN

This example prints my_string in the console but the return value is 2.

2.3.3 Keyword “return” inside Functions
The keyword return can be used at any place inside a function to end it.

Example 3: Use of the Return Keyword

FUNCTION my_function
IF (global_var%=1) THEN
$my_function = 1.0
RETURN

ENDIF
$my_function = 0.0

ENDFN

The current value of the RETURN ($FunctionName) will be returned just as if the ENDFN was
reached.

2.3.4 Function Parameters
Parameters can be defined and applied to a function. These parameters need to be typed
(same way as functions).

Properties of these parameters:

• Parameters are put between parenthesis and separated by a coma.

• Parameters are, by default, passed by value.

• Parameters type is deduced by the naming convention:

– For string type: $ at the end

– For integer type:% at the end

– For float type: nothing at the end

• When parameters are arguments passed by reference, they are labeled as:

– @$name$ for string type

– @$name for integer and float type

– @$name% is not supported

• Parameters are local variables in the function scope.

• These function parameters don't exist outside the function.

To clarify the distinction with standard variables: every parameter variable begins with $ in the
declaration and inside the function. This allows the manipulation of global and local variable
with the same name without mistaking.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 13 (128)

Example 4: Parameters of a Function

FUNCTION my_function($param1, $param2%, $param3$)
$my_function = $param2% + $param1 + 1

ENDFN
PRINT @my_function(3, 3, "3")

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 14 (128)

2.3.5 Function Call
To call a function, the@ character precedes the function name and the parameters values are
put between parenthesis. If there is no parameters, parenthesis may be omitted.

Example 5: How to Call a Function

FUNCTION my_function($param1)
PRINT "call of [my_function] with param [";$param1;"]"

ENDFN

FUNCTION my_function2()
PRINT "my_function2()"

ENDFN

FUNCTION my_function3
PRINT "my_function3()"

ENDFN

@my_function(3)
@my_function2 // call of a function without parenthesis nor parameters
@my_function3() // call of a function without parameters

Float and integer parameters must be handled with precaution. If a float is given as an integer
parameter (or the other way around), an implicit cast will occur.

Example 6: Float / Integer error

FUNCTION my_function($param1%)
PRINT "call of [my_function] with param [";$param1%;"]"

ENDFN

@my_function(3) // This is OK
@my_function(3.4) // This transformed the float into an integer

2.3.6 Passing Arguments by Reference
By default, the parameters are passed by value.

This means that side effects can't be executed. But sometimes, side effects are useful (i.e: a
function that returns 3 values).

If the parameter is preceded by '@', they will be passed by reference. It can then be used as a
normal parameter inside the function.

The only difference compared to a normal parameter (passed by value) is that changes made
inside the function will be visible outside this function.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 15 (128)

Example 7: Function with arguments by reference

FUNCTION my_function(@$param1,@$param2,@$param3$)
$param1 = $param1 * 2
$param2 = $param2 * 2
$param3$ = "my_function_string"

ENDFN

v1 = 1.5
v2% = 2
v3$ = "my_string"

@my_function(v1, v2%, v3$)

PRINT v1 // Prints 3.00
PRINT v2% // Prints 4
PRINT v3$ // Prints my_function_string

2.3.7 Recursive Function Call
A function can be called inside an already existing function.

Example 8: Function in a Function

FUNCTION exp($x, $n)
IF ($n = 1) then
$exp = $x

ELSE
IF ($n mod 2 = 0) THEN

$exp = @exp($x * $x, $n / 2)
ELSE

$exp = $x * @exp($x * $x, ($n - 1) / 2)
ENDIF

ENDIF
ENDFN

PRINT @exp(3, 3)

2.4 Label
To use the GOTO and GOSUB commands, labels need to be defined.

A label is a name beginning a line and ended by a colon “:”. The label name doesn’t accept any
space character.

The GOTO / GOSUB instruction uses the label name (without the colon) as parameter.

Example 9: Use of Label

GOTO "myLabel"
myLabel:
PRINT "Hello World"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 16 (128)

2.4.1 Local Label
Sometimes, it's useful to have labels only inside a function to ease the flow control but without
polluting the name spaces of the program.

To solve this, local labels can be defined in functions.

Example 10: Local Label

FUNCTION test_label():
$a% = 1
GOTO $exit
$a% = 2
$exit:
$test_label = $a%

ENDFN
PRINT @test_label() // Prints 1

A GOTO can be used inside the function to move to the $exit: label. Outside the function, this la-
bel doesn't exist.

2.5 Operators Priority
When these operations appear in expressions, they have the following priority:

1. Bracket terms

2. All functions except NOTand – (inversion)

3. Inversion of sign -

4. ^, *, /, MOD (modulo function)

5. +, -

6. =, >, <, <=, >=, <>

7. NOT, BNOT • AND, OR, XOR:

These expressions are ordered by decreasing order of priority.

The operator ^ is the power operator such as 2^4 = 2*2*2*2

2.6 Types of Variable
Variables typed as integer or as string can be defined with a long name. Long name variable
are also applicable on array (i.e: DIM arrayOfString(25,80))

Variable names are case insensitive (myint% andMyInt% are the same variable).

2.6.1 Integer Variable
abcdef%

abcdef% The name of the variable, followed by the% sign which indicates a variable of
integer type.

An integer variable can contain a number of integer type.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 17 (128)

The variable name can contain alphabetical characters, numbers and "_" underscore, but name
must begin with an alphabetical character.

Example 11: Syntax of Integer Variable

// unlimited number of variables
my_variable% = 1
// unlimited number of array of strings DIM A(25,80)
DIM arrayOfString(25,80)
// unlimited number of array of floats
DIM arrayOfFloat(25,80)

2.6.2 Real Variable
Syntax
abcdef

abcdef the name of the real variable

Variable names can contain up to 200 characters and are case insensitive: AbCdEf and ABC-
DEF represent the same variable.

The variable name can contain alphabetical characters, numbers and "_" underscore, but name
must begin with an alphabetical character.

A real variable can contain a real number.

Example 12: Syntax of Real Variable

MyVar = 12.3 // valid
My_Var = 12.3 // valid
Var1 = 12.3 // valid
My Var = 12.3 // invalid
1Var = 12.3 // invalid

2.6.3 Alphanumeric String
Syntax
abcdef$

abcdef$ the name of the variable,followed by the $ sign which indicates a variable of string
type

The name of the real variable can contain any number of characters. Its size is modified each
time the content of the variable is modified.

It is possible to address parts of a string with the TO keyword:

Example 13: Use of the TO Keyword

A$(4 TO 10) // returns a string from char. #4 to char. #10
A$(4 TO) // returns a string from char. #4 until the end
A$(4 TO LEN(A$)) // same result as A$(4 TO)

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 18 (128)

2.6.4 Character Arrays
Syntax
DIM a$(E1 [, E2 [, E3 [,....]]])

a$ the name of the array variable created.

E1 [, E2 [, E3 [,....]]] the number of characters for the first dimension. E2, E3, E4 are optional and are
present if the array must have 2, 3, 4... dimensions.

The number of dimensions is limited only by the memory size of the BASIC.

When the DIM command is called, the array is created and replaces any other DIM or variable
existing with the same name. To erase an array:

• Use the CLEAR command which erases all variables

• Change the dimension of the array to a single element with another call to DIM in case the
user doesn’t want to clear everything but needs to release memory

An array named as a$(E1,E2,E3) and an alphanumeric variable named as a$ can exist
simultaneously.

A characters array contains E1*E2*E3 *... characters.

Example 14: Character Arrays

DIM A$(10,20)
A$(1) = "test"
A$(1,5 to 10) = "test2"
PRINT A$(1) // Outputs testtest2
PRINT A$(1, 5 to 10) // Outputs test2

2.6.5 Real Arrays
The real arrays is also valid for integers as there is no dedicated integer arrays.

Syntax
DIM a(E1 [, E2 [, E3 [,....]]])

a the name of the array variable created.

E1 [, E2 [, E3 [,....]]] the number of real for the first dimension. E2, E3, E4 are optional and are present
if the array must have 2, 3, 4… dimensions.

The number of dimensions is limited only by the memory size of the BASIC.

When the DIM command is called, the array is created and replaces any other DIM or variable
existing with the same name. To erase an array:

• Use the CLEAR command which erases all variables

• Change the dimension of the array to a single element with another call to DIM in case the
user doesn’t want to clear everything but needs to release memory

In order to assign a value, type a(x, y, z) = value.

An array named as a(E1,E2,E3) and a real variable named as a can exist simultaneously.

A real array contains E1*E2*E3 *... reals.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 19 (128)

Example 15: Real Arrays

DIM d(5,5)
d(1,5) = 6.7
PRINT d(1,5) // Outputs 6.70

2.6.6 Local Variables
Local variables are used to define variables visible only in the function scope.

The local variable needs to be preceding by the $ character inside the function.

Example 16: Local Variables

FUNCTION a()
$b = 3 // local variable b
$a = $b + 3

ENDFN

exec:
print @a() // here, @a() exists, but not $b.

2.7 TagName Variable
Syntax
TagName@

TagName the name of a tag available in the device

Adding the “@” after the tag name allows direct access to the tag value. This syntax can be
used for reading or writing to the tag.

Example 17: Reading a Tag Value

Tag1@ = 25.3
Tag2@ = Tag1@
IF (Tag3@ > 20.0) THEN
…

Only in some cases is it useful to use the GETIO or SETIO commands to build the tag name in
the program. For example:.

• To perform some repetitive operations

• If a tag name begins with a number, it cannot be accessed in BASIC using the@ syntax

Example 18: Using GETIO / SETIO

FOR i% = 1 to 10
A$ = "Tag" + STR$(i%)
SETIO A$, i%

NEXT i%

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC language definition 20 (128)

2.8 Tag Access
All the BASIC functions accessing tags can reference the tag by its name (without the@ like in
the TagName Variable, p. 19), by its index or by its ID.

Tag Access: Name, Index or ID
Method Parameter Example Example explanation
Tag name access Tagname String SETIO "TAG1",23.5 Set the value 23.5 in the Tag

named TAG1
Index access Negative Integer (or 0) SETIO -2,23.5 Set the value 23.5 in the Tag

at the INDEX 2 (the third en-
try in the var_lst.txt)

ID access Positive Integer (>0) SETIO 2,23.5 Set the value 23.5 in the Tag
with the ID=2

If there are 6 tags defined in the config.txt file, each tag can be accessed by its index (-0 to -5)
or by its ID (the first item of a tag definition) or finally by its name.

The ID of a tag is never used again by the device until this device is formatted (reset level 2).

2.9 Limitation of the BASIC
The BASIC script is limited by the memory allocated to it (128 k). Users have to share this mem-
ory space between the code and the data.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 21 (128)

3 List of Keywords
The commands and functions used to program the device are listed below in alphabetical order.

The following commands or functions are available for any firmware version (with a minimum of
v8.1s4) except specifically notified otherwise.

3.1 # (bit extraction operator)
Syntax
E1 # E2

E1 integer variable

E2 bit position (0 to 31)

Description
The # function is used to extract a bit from an integer variable (and from an integer only).

Example 19: Bit Extraction

i% = 5 // Binary 0101
a% = i%#0 // a%=1
b% = i%#1 // b%=0
c% = i%#2 // c%=1

3.2 // (comment)
Syntax
// Free text

Description
This command enables the insertion of a line of comment in the program. The interpreter does
not consider the line.

The comment can be written on a new line or on a line already containing an instruction (com-
mand, function...).

Example 20: Insert a Comment

PRINT a%
// This line will not be taken into consideration
a% = 2 // Write a comment on the same line

Check also
REM, p. 90

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 22 (128)

3.3 ABS
Syntax
ABS E1

E1 can be a value or a tag name

Description
The function returns the absolute value of E1. If the value is negative, parenthesis () must be
used.

Example 21: Absolute Value

ABS (-10.4) // Returns 10.4

3.4 ALMACK
Syntax
ALMACK S1, S2

S1 the tag reference (tag name, ID or index)

S2 the name of the user that will acknowledge the alarm. If this field is filled with
empty quotes “ “, then the adm login is assumed for acknowledgment.

Description
The ALMACK function acknowledges the alarm status of a given tag. ALMACK returns the error
“Operation failed (28)” if the tag is not in alarm.

Example 22: Acknowledge an Alarm

ALMACK "MyTag", "John"

3.5 ALSTAT
Syntax
ALSTAT S1

S1 the tag reference (tag name, ID or index)

Description
This function returns the S1 tag alarm status. The possible returned values are:

ALSTAT: Possible Value for S1
Parameter Type
0 No alarm
1 Pre-trigger: no active alarm but physical signal active
2 In alarm
3 In alarm but acknowledged
4 Returns to normal but not acknowledged

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 23 (128)

Example 23: Get the Alarm Status of a Tag

a% = ALSTAT "MyTag"

3.6 AND
Syntax
E1 AND E2

Description
Do a bit-wise AND between E1 and E2. Also have a look at the priority of the operators.

Example 24: Perform an AND operation

1 AND 2 // Returns 0
2 AND 2 // Returns 2
3 AND 1 // Returns 1
MyFirstTag@ AND 3 // Keeps first 2 bits

Check also
Operators Priority, p. 16; OR, p. 82; XOR, p. 104

3.7 ASCII26
Syntax
ASCII CA

Description
The function returns the ASCII code of the first character of the CA chain. If the chain is empty,
the function returns 0.

Example 25: Get the ASCII code

a% = ASCII "HOP" // Returns the ASCII code of the character H

Check also
CHR$, p. 24

3.8 BIN$
Syntax
BIN$ E1

Description
The function returns a string of 32 characters that represents the binary value of E1. It does not
work on negative values.

Example 26: Get the Binary Value of an Integer as a String

a$ = BIN$ 5 // a$ equals "00000000000000000000000000000101"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 24 (128)

Check also
HEX$, p. 49

3.9 BNOT
Syntax
BNOT E1

Description
This function returns the bitwise negation or one's complement of the integer E1.

Example 27: Get the Bitwise Negation of an Integer as a String

a% = 5
b% = BNOT a%
PRINT BIN$(b%) // Prints "11111111111111111111111111111010"

Check also
Operators Priority, p. 16

3.10 CFGSAVE
Syntax
CFGSAVE

Description
This command writes the configuration of the device to flash. It is necessary after SETSYS
command on SYS, TAG or USER records because using SETSYSmodifies the configuration in
memory.

The modification is effective as soon as the SETSYS XXX, "save" (where “XXX” stands for
“SYS”, “USER” or “TAG”), but the config is not saved to the device flash file system.

Check also
GETSYS, SETSYS, p. 40

3.11 CHR$
Syntax
CHR$ E1

Description
The function returns a character string with only one character corresponding to the ASCII code
of E1. E1 must be contained in the 0..255 range.

Example 28: Get the Bitwise Negation of an Integer as a String

a$ = CHR$ 48 // a$ equals 0
b$ = CHR$(GETIO(MyTag)) // If MyTag = 32, then b$ will hold one space

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 25 (128)

Check also
ASCII26, p. 23

3.12 CLEAR
Syntax
CLEAR

Description
Erases all variables from the device. All DIM are erased. This command cannot be canceled.

3.13 CLOSE
Syntax
CLOSE I1

I1 the file number (# from 1 to 8)

Description
This command closes the file which number isI1. If the file is opened for write, it is actually writ-
ten to the flash file system. The function can be called even if the file is not opened.

Check also
EOF, p. 29; GET, p. 34; OPEN, p. 77; PUT, p. 85

3.14 CLS
Syntax
CLS

Description
This command erases the virtual screen of the device, visible in the BASIC IDE debug panel.

Check also
PRINT – AT, p. 83

3.15 DAY
Syntax
DAY E1|S1

E1 a date in integer format: number of seconds since 1970-01-01

S1 a date in string format: “18/09/2003 15:45:30”

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 26 (128)

Description
This function returns an integer corresponding to the value of the day of the month (1 — 31) that
matches a defined time variable.

If the function is called with a float variable as value, it will result in an error “invalid parameter”.

Example 29: Get the Day of the Month out of a Date Variable

a$ = TIME$
a% = DAY a$

b% = GETSYS PRG, ”TIMESEC”
a% = DAY b%

Check also
DOW, p. 27; DOY, p. 27;MONTH, p. 61;WOY, p. 103

3.16 DEC
Syntax
DEC S1

S1 the string to convert from HEX to DEC

Description
This function returns an integer corresponding to the hexadecimal value of parameter. The
string is not case sensitive (i.e: a023fc = A023FC).

The string can be of any length.

Example 30: Convert from HEX to DEC

a$= HEX$(1234)
i% = DEC(a$) // Now, I% = 1234

Check also
HEX$, p. 49

3.17 DIM
Description
The DIM function allows the creation of variables of array type. Two types of array are available:

• the characters arrays

• the real arrays.

Check also
Types of Variable, p. 16

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 27 (128)

3.18 DMSYNC
Syntax
DMSYNC

Description
The command has no parameter and triggers a Data Management synchronisation. If the Data
Management has been configured on the device, this command will send the historical data to
the Data Management system.

3.19 DOW
Syntax
DOW E1|S1

E1 a date in integer format: number of seconds since 1970-01-01

S1 a date in string format: “18/09/2003 15:45:30“

Description
This function returns an integer corresponding to the value of the day of the week (0 — 6; Sun-
day = 0) that matches a defined time variable.

If the function is called with a float variable as value, this will result in an error “invalid
parameter”.

Example 31: Get the Day of the Week out of a Date Variable

a$ = TIME$
a% = DOW a$

b% = GETSYS PRG, "TIMESEC"
a% = DOW b%

Check also
DAY, p. 25; DOY, p. 27; MONTH, p. 61;WOY, p. 103

3.20 DOY
Syntax
DOY E1|S1

E1 a date in integer format: number of seconds since 1970-01-01

S1 a date in string format: “18/09/2003 15:45:30“

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 28 (128)

Description
This function returns an integer corresponding to the value of the current day in the year (0 —
365) that matches a defined time variable.

If the function is called with a float variable as value, this will result in an error “invalid
parameter”.

Example 32: Get the Day of the Year out of a Date Variable

a$ = TIME$
a% = DOY a$

b% = GETSYS PRG, "TIMESEC"
a% = DOY b%

Check also
DAY, p. 25; DOW, p. 27; MONTH, p. 61;WOY, p. 103

3.21 DYNDNS
Syntax
DYNDNS

Description
The command has no parameter and asks a NO-IP dynamic PPP IP address update to the Dy-
namic DNS server set on the “Publish IP Address” web page of the device.

It will be used to synchronize a Dynamic DNS server such as No-IP with the eWON PPP IP
address.

3.22 END
Syntax
END

Description
This command indicates the end of the program. It can also be used to stop the execution of a
section. If the program is in RUN mode, this command will suspend the execution until another
section is ready to run (ONCHANGE, CYCLIC...).

Example 33: Ending the Program

my-label:
PRINT “START” // Prints START
END
PRINT “HELLO” // This line is not printed

Check also
HALT, p. 49

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 29 (128)

3.23 EOF
Syntax
EOF E1

E1 a number (1 — 8) corresponding to a /usr file or an Export Block Descriptor

Description
This function returns 1 when end of file is reached. EOF always returns 1 with files opened for
write.

EOF works only with OPEN “file:...” or OPEN “exp:...” FileStream.

Example 34: Knowing EOF Has Been Reached

PRINT "open file"
OPEN "file:/usr/myfile.txt" FOR TEXT INPUT AS 1

ReadNext:
IF EOF 1 THEN GOTO ReadDone
A$ = GET 1
PRINT A$
GOTO ReadNext

ReadDone:
PRINT "close file"
CLOSE 1

Check also
CLOSE, p. 25; GET, p. 34; OPEN, p. 77; PUT, p. 85

3.24 ERASE
Syntax
ERASE Filename|Keyword

Filename the path to the file that needs to be erased

Keyword Specific keyword to erase root files

Description
This command erases the specified file in the “/usr” directory. This means it doesn’t work for a
different directory than the “/usr” directory. Omitting “/usr/” before the filename will result in a
syntax error.

The file and directory names are case sensitive.

However, to erase some root files, some special keywords have been integrated:

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 30 (128)

Keyword for ERASE command
Keyword Description
#ircall To erase the ircall.bin file, then all historical logged data
#events To erase the events.txt file, the diagnostics file.
#hst_alm To erase the hst_alm.txt file, the alarms historical file.
#usr To erase (and format) completely the “/usr” directory/partition
#sys To erase (and format) completely the “/sys” directory/partition

Example 35: Erase a File

ERASE "/usr/myfile.shtm"
ERASE "#events"

Check also
RENAME, p. 90

3.25 FCNV
Syntax
FCNV S1, EType[, ESize, SFormat]

S1 the string to be converted

EType the parameter determining the type of conversion

ESize the size of the string to convert (can be shorter than the entire S1)

SFormat the format specifier for the conversion

Description
Converts a string to a number (float or integer). The return value can be an IEEE float, an inte-
ger, a CRC16 or a LRC. The type of conversion is determined by the EType parameter.

EType for FCNV command
Etype value Conversion type
1 convert string (MSB first) to float
2 convert string (LSB first) to float
5 compute the CRC16 on string and return an integer
6 compute the LRC on string and return an integer
10 convert string (MSB first) to integer
11 convert string (LSB first) to integer
20 convert string to a float using an SFormat specifier
30 convert string to an integer using an SFormat specifier
40 convert time as string into time as integer

Check also
SFMT, p. 95

3.25.1 Convert from an IEEE Float Representation
The IEEE float representation use four bytes (32 bits).

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 31 (128)

Fig. 1 Conversion to an IEEE Float

The string could be LSB (Least Significant Byte) first which will convert a$(1 to 4) to a float IEEE
representation with MSB (Most Significant Byte) first.

FCNV a$, 1
a$(1) // MSB which represents Exponent + Sign
...
a$(4) // LSB which represents Mantissa

The string could also be MSB first which will convert a$(1 to 4) to a float IEEE representation
with LSB first

FCNV a$, 2
a$(1) // LSB which represents Mantissa
...
a$(4) // MSB which represents Exponent + Sign

Example 36: Conversion to an IEEE Float Variable

ieee = 0.0
a$ = "1234"
a$(1) = Chr$(140)
a$(2) = Chr$(186)
a$(3) = Chr$(9)
a$(4) = Chr$(194)
ieee = FCNV a$,2
PRINT ieee // This will print -34.432176

3.25.2 Compute CRC16 of a String
Compute the Cyclic Redundancy Check (CRC) of the string.

CRC-16 uses the Polynomical 0x8005 (x16 + x15 + x2 + 1) with an init value of 0xFFFF.

Example 37: Computer CRC16 of a string

a$ = "My string"
c% = FCNV a$, 5
PRINT c% // Prints 51608

3.25.3 Compute LRC of a String
Compute the LRC (Longitudinal Redundancy Check) of the string.

The LRC computation is the sum of all bytes modulo 256.

Example 38: Computer CRC16 of a string

a$ = "My string"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 32 (128)

c% = FCNV a$, 6
PRINT c% // Prints 125

3.25.4 Compute from an Integer Representation
Convert a string containing several bytes (1 to 4) in an integer value.

The integer representation could be LSB (Least Significant Byte) first or MSB (Most Significant
Byte) first.

The ESize parameter is required as it indicates the size of the string to convert: 1, 2 ,3 or 4

// Convert a$(1 to 4) to an integer representation with MSB first
FCNV a$, 10, 4
a$(1) // MSB
...
a$(4) // LSB

// Convert a$(1 to 2) to an integer representation with MSB first
FCNV A$, 10, 2
a$(1) // MSB
...
a$(4) // LSB

// Convert a$(1 to 4) to an integer representation with LSB first
FCNV a$, 11, 4
a$(1) // LSB
...
a$(4) // MSB

// Convert a$(1 to 2) to an integer representation with LSB first
FCNV a$, 11, 2
a$(1) // LSB
...
a$(4) // MSB

Example 39: Convert from an Integer Variable

a$ = CHR$(1) + CHR$(4) + CHR$(2) + CHR$(0)
a% = FCNV a$, 10, 2
b% = FCNV a$, 11, 2
PRINT a% // a% = 260
PRINT b% // b% = 1025

c% = FCNV a$, 10, 3
d% = FCNV a$, 10, 4
PRINT c% // c% = 66562
PRINT d% // d% = 17039872

3.25.5 Convert String to a Float Using an SFormat Specifier
Convert a string with a float number (i.e: a$ = "153.24") to a float variable using a format
specifier.

The ESize parameter is required as it is the size of the string to convert (0 is to convert the
whole string).

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 33 (128)

The SFormat parameter is required as it is the format specifier string and must be "%f".

Example 40: Convert String to a Float

float_0 = FCNV "14.2115", 20, 0, "%f" // float_0 = 14.2115
float_1 = FCNV "14.2115", 20, 4, "%f" // float_1 = 14.2
float_2 = FCNV "-142.1e3", 20, 0, "%f"

3.25.6 Convert String to an Interger Using an SFormat Specifier
Convert a string with an integer number (i.e: a$ = "154" or a$ = "F0E1") to an integer variable
using a format specifier.

The ESize parameter is required as it is the size of the string to convert (0 is to convert the
whole string).

The SFormat parameter is required as it is the format specifier string and can be "%f":

• "%d" if the string holds a decimal number.

• "%o" if the string holds an octal number.

• "%x" if the string holds an hexadecimal bumber.

Example 41: Convert String to a Integer

a% = FCNV "1564", 30, 0, "%d" // a% = 1564
a% = FCNV "1564", 30, 2, "%d" // a% = 15
a% = FCNV "FE", 30, 0, "%x" // a% = 254
a% = FCNV "11", 30, 0, "%o" // a% = 9

3.25.7 Convert Time as String into Time as Integer
Convert a string holding a time in the format “dd/mm/yyyy hh:mm:ss” (ex: “28/02/2007
16:48:22”) into an integer holding the number of seconds since 1970-01-01 00:00:00.

Float value is not accurate enough to hold big numbers used to represent seconds since 1970-
01-01, this leads to a lost of precision during time conversion.

Example 42: Convert Time String to Time Integer

a% = FCNV "24/04/2007 12:00:00", 40 // a% = 1177416000
a% = FCNV "01/01/1980 00:00:00", 40 // a% = 315532800

Check also
TIME$, p. 99

3.26 FOR - NEXT - STEP
Syntax
FOR a% = E1 TO E2 [STEP E3]
[Instructions]
NEXT a%

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 34 (128)

a% an integer variable used as a counter.
Variable must be a single character only (ab% is not allowed).

E1, E2 and E3 integer values / variables

Description
The instructions between the lines containing the FOR and the NEXTare executed until a% is
outside the bounds of (E1, E2). The loop is always executed at least once, even if E1 is greater
than E2.

During the first loop execution, a% equals E1.

FOR and NEXTcommands cannot be on the same line of program.

Do not exit the FOR/NEXT loop by a GOTO statement because, in this case, after a certain
number of executions, the memory of the device will be full.

If STEP is not mentioned, a% increases by 1

If a% is used inside a function, it should be used as a local variable.

Example 43: For Loop

FOR a% = 10 TO 20 STEP 2
PRINT a%

NEXT a%

3.27 GET
The GETcommand works completely differently if the file is opened in binary or text mode.

The file syntax has been extended to allow access to the serial port and TCP | UDP socket.

The command description describes operation for

• /usr (text and binary modes)

• COM (always binary)

• TCP-UDP (always binary)

3.27.1 /usr in Binary Mode
Syntax
GET E1, E2|S1

E1 the file number (1 — 8)

E2 the number of bytes to read from the file

S1 the keyword on which the function will base its return value

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 35 (128)

Description
This function returns a string of character with the data read. It also moves the file read pointer
to the character following the last character read (or to end of file).

• Get 1, 1 returns maximum 1 character

• Get 1, 5000 returns maximum 5000 characters

• Get 1 without parameter is equivalent to Get 1, 2048

A keyword S1 can be used instead of an integer E2. By using a keyword, the function returns
file specific information.

S1 Value Return information
SIZE Total file size

Example 44: GET in /usr folder – Binary Mode

OPEN "file:/usr/myfile.bin" FOR BINARY INPUT AS 1
a$ = GET 1, 10 // Read 10 bytes
PRINT a$
CLOSE 1

3.27.2 /usr in Text Mode
Syntax
GET E1[, E2]

E1 the file number (1 — 4)

E2 the buffer size

Description
This function returns a string or a float according to the data read from the file. If this data is sur-
rounded with quotes then it is returned as a string, otherwise it is returned as a float. The func-
tion will never return an integer

For string items, the single quote or double quotes can be used. The separator between items
is the semicolon character.

When data is read from the file, it must be read in a buffer to be interpreted. The buffer must be
able to hold at least the whole item and the CRLF at the end of the line if the item is the last of
the line. The default buffer size is 1000 bytes, if the file contains items that might be bigger than
1000 bytes, E2 parameter should be specified.

The function moves the file read pointer to the next item.

When a CRLF (CHR$(13)+CHR$(10)) is found it is also skipped.

Example 45: GET in /usr folder – Text Mode

// myfile.txt content:
// 123;"ABC"
// 1.345;"HOP"

DIM a$(2,20)
DIM a(2)
OPEN "/myfile.txt"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 36 (128)

FOR TEXT INPUT AS 1
I% = 1

ReadNext:
IF EOF 1 THEN GOTO ReadDone
a(I%) = GET 1
a$(I%) = GET 1
Ii% = i% + 1
GOTO ReadNext

ReadDone:
CLOSE 1

3.27.3 COM in Binary Mode
Syntax
GET E1, E2

E1 the file number

E2 the maximum number of bytes to read from the serial port

Description
This function returns a string with the data read from the serial port buffer. If there is no data to
read from the buffer the returned string is empty.

If E2 is specified and the buffer contains more than E2 bytes, the function returns only with E2
bytes.

If E2 is specified and the buffer contains less than E2 bytes, the function returns with the content
of the buffer.

The function always returns immediately.

Attempting to use a serial port configured and occupied by an IO server is not allowed and re-
turns an error.

Example 46: GET from COM – Binary Mode

OPEN "COM:2, ... AS 1"
a$ = GET 1, 100
CLOSE 1

3.27.4 TCP/UDP in Binary Mode
Syntax
GET E1, E2

E1 the file number returned by OPEN

E2 the maximum number of bytes to read from the socket

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 37 (128)

Description
This function returns a string with the data read from the TCP/UDP socket. If there is no data to
read from the buffer, the returned string is empty.

If E2 is specified and the buffer contains more than E2 bytes, the function returns only with E2
bytes.

If E2 is specified and the buffer contains less than E2 bytes, the function returns with the content
of the buffer. If the other party has closed the socket or if the socket is in error at the TCP/IP
stack level, the function exits with error

The function always returns immediately.

Check also
CLOSE, p. 25; EOF, p. 29; OPEN, p. 77; ONERROR, p. 72; PUT, p. 85

3.28 GETFTP
Syntax
GETFTP S1, S2[, S3]

S1 the name of the source file to retrieve from the FTP server

S2 the name of the destination file to write on the eWON

S3 the FTP server connection parameters.
Formatted as [user:password@]servername[:port][,option1]

Description
This function retrieves a file on an FTP server and copies it on the device.

The source filename can include a path, built with slash “/” or backslash “\” depending of the
FTP server. As the destination filename is on the device, its path must begin with a slash “/” and
should include a path built with slash “/” as well.

The [option1] parameter from S3 configures the mode of the communication. If [option1] is omit-
ted, the device will connect in active mode. Possible values are:

• 1: passive mode

• 0: active mode

In the case S3 is not provided, the FTP server parameters on the main configuration page from
the web interface of the device will be used.

This function posts a scheduled action request for a GETFTP generation.

When the function returns, the GETSYS PRG, "ACTIONID" returns the ID of the scheduled ac-
tion and allows tracking this action. It is also possible to program an ONSTATUS action that will
be called when the action is finished (with or without success).

Example 47: Use of GETFTP

a$ = "source-file-name.txt"
b$ = /usr/destination-file-name.txt

// Transfer a file
GETFTP a$, b$

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 38 (128)

// Transfer a file with address + credentials
c$ = "user:pwd@ServerTP.com:21, 1"
GETFTP a$, b$, c$

// Append the content to a root document
GETFTP "inst_val.txt", "/inst_val.txt"

Check also
ONSTATUS, p. 75; GETSYS, SETSYS, p. 40; PUT, p. 85

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 39 (128)

3.29 GETHTTP
Syntax
GETHTTP S1, S2, S3[, S4]

S1 the connexion Parameter
formatted as: [user:password@]servername[:port]

S2 the file name to assign on the device eWON
formatted as: file name path

S3 the URI of the file on the HTTP
formatted as: server absolute path of the file to be downloaded

S4 "PROXY"

Description
The GETHTTP command submits an HTTP GET request. It allows the download of a file (one
per GETHTTP command) using its URI.

When the function returns, the GETSYS PRG, returns the ID of the scheduled action and allows
the tracking of this action. It is also possible to program an ONSTATUS action that will be called
when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the device performs the GETHTTP
through a proxy server. The device uses the proxy server parameters configured in the Internet
connection proxy parameters on the VPN Global section of the web interface.

By default, when no port is provided, the HTTP port is 80.

Example 48: Perform a GETHTTP Request

b$ = "/usr/filename1.txt"
c$ = "/filename1.txt"

// Download without HTTP basic authentication
a$ = "10.0.100.206"
GETHTTP a$, b$, c$

// Download with basic authentication and configured HTTP port
a$ = "adm1:adm2@www.ewon.biz:89"
GETHTTP a$, b$, c$

// Download without HTTP basic authentication through proxy serveur
GETHTTP a$, b$, c$, "PROXY"

Check also
ONSTATUS, p. 75; GETSYS, SETSYS, p. 40; PUTHTTP, p. 88

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 40 (128)

3.30 GETIO
Syntax
GETIO S1

S1 the tag reference (tag name, ID or index)

Description
This function returns the value of the S1 tag set in the device. The value of this tag is a float.

This function is equivalent to a = MyTag@. The MyTag@ BASIC variable is distinct than the de-
vice memory tag “MyTag”.

Example 49: Get the Value of a Tag

a = GETIO "MyTag"
a = GETIO 12 // Valid only if there’s a tag ID = 12

Check also
Tag Access, p. 20

3.31 GETSYS, SETSYS
The GETSYS and SETSYS functions are used to get or set some special parameters of the
device.

There are 5 types of parameters:

GETSYS / SETSYS Parameters Types
Group Description
PRG Program parameters such as the time in milliseconds or the type of action that

started the program
SYS Modification of the device system parameters
COM Modification of the device communication parameters
USER Modification of the device users list
TAG Modification of the device tag list
INF Information about the device (debug counter,...)

Each group has a number of fields that can be read of written.

3.31.1 Procedure
The procedure is the same for each group call:

1. A block must be loaded for modification with the SETSYS command and a special field
called "load".

SETSYS TAG, "load", XXXXXXX

According to the source, this block will be either the device system configuration, the de-
vice COM configuration, a tag configuration or a user configuration.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 41 (128)

2. Each field of this configuration can be accessed by the GETSYS or SETSYS commands.
This modification works on the record loaded values but does not actually affect the
configuration.

3. When the modifications are done, the SETSYS command is called with a special field
called "save" and the edited block is saved. This is only necessary if the record has
changed.

At this time, the record edited content is checked, the configuration is updated and applied.

4. The CFGSAVE command can be called to save the updated configuration to flash.

Recognized Field Values per Group
The fields values are the same fields as those returned by the “GETconfig.txt” command
through FTP.

Syntax
GETSYS SSS, S1

SSS the source block: PRG, SYS, TAG, USR. This parameter must be typed as is, it
could not be replaced by a string!

S1 the field name that needs to be read or modified

Syntax
SETSYS SSS, S1, S2|E2

SSS the source block: PRG, SYS, TAG, USR. This parameter must be typed as is, it
could not be replaced by a string!

S1 the field name that needs to be read or modified. It can also be the action "load"
or "save"

S2|E2 the value to assign to the field. The type of the value depends on the field itself.

Example 50: GETSYS & SETSYS

a% = GETSYS PRG, "TIMESEC"
// Supposedly Tag_1 exists and is a memory tag
SETSYS TAG, "load", "Tag_1"
// a$ = "Tag_1"
a$ = GETSYS TAG, "Name"
// EmailTo field of Tag_1
SETSYS TAG, "ETO", "ewon_actl@ewon.biz"
// save data in the config which results in the update of Tag_1
SETSYS TAG, "save"
SETSYS TAG, "Name", "Tag_2"
// Update or create Tag_2 with Tag_1 config
SETSYS TAG, "save"

Check also
CFGSAVE, p. 24;

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 42 (128)

TAG Load
The TAG load case is particular because it allows the load of a tag defined by its name, ID or
index.

If there are 6 tags defined in the config, each tag can be accessed by its name, its index (0 to 5)
or its ID. The ID is the first item of a tag definition when reloading the config.txt file. It is never
reused until the device is formatted (with a reset level 2).

Method XXX Param. Example Explanation
Tag name access Tag name SETSYS TAG, "load",

"MyTagName"
Loads tag named
“MyTagName”

Index access Index SETSYS TAG, "load", - 4 Loads Tag which index is 4
TagId access Id SETSYS TAG, "load", 50 Loads Tag which id is 50

Check also
Tag Access, p. 20

Extended Syntax to Access IO Server Lists of Parameters
General Syntax
GETSYS SYS, "ParamName:SubParamName"
SETSYS SYS, "ParamName:SubParamName", "NewValue"

ParamName the name of the whole field form the config.txt file.

SubParamName the sub-parameter (inside the ParamName) that needs to be read or modified.

NewValue the value to assign to the field.

Specific IOServer Syntax
GETSYS SYS, "IOSrvData[IOServerName]:SubParamName"
SETSYS SYS, "IOSrvData[IOServerName]:SubParamName", "NewValue"

IOServerName the name of the IOServer you want to edit form the config.txt file).

SubParamName the sub-parameter (inside the IOSrvData[...]) that needs to be read or modified.

NewValue the value to assign to the field.

Description
These commands allow an easy access to sub-parameters contained in a parameter string.

Example 51: IO Server

// Generic syntax
SETSYS SYS, "load"
A$ = GETSYS SYS, "IOSrvData2:GlobAddrA"
SETSYS SYS, "IOSrvData2:GlobAddrA", "0,254,0"

// Specific IO server syntax
SETSYS SYS, "load"
A$ = GETSYS SYS, "IOSrvData[UNITE]:GlobAddrA"
SETSYS SYS, "IOSrvData[UNITE]:GlobAddrA", "0,254,0"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 43 (128)

3.31.2 Parameter Type: PRG

ACTIONID

Operation Read | Write

Type Integer

Description After execution of a scheduled action such as SENDSMS, SENDMAIL, PUTFTP,
SENDTRAP orTCP/UDP Connect, the ACTIONID returns the ID of the action that
had just been executed.

When the ONACTION event is executed, this ACTIONID is stored in EVTINFO.
Writing in this field is useful to read the current value of an action.

ACTIONSTAT

Operation Read only

Type Integer

Description Current status of the action with ActionID given by ACTIONID.

If ACTIONSTAT needs to be checked, ACTIONID must be initialized first.

Possible values of ACTIONSTATare:

• -1: in progress

• -2: ID not found

• 0: done with success

• >0: finished with error. The number is the error code

The device maintains a status list of the last 20 scheduled actions that were
executed. When more actions are executed, the older status is erased and its
ACTIONSTAT may return –2, meaning it is not available anymore.

ADSLRST

Operation Write

Type Integer

Description Force a hardware ADSL modem reset: SETSYS PRG, "ADSLRST", 1

EVTINFO

Operation Read only

Type Integer

Description The value of this field is updated before executing the ONXXXXX (ONSTATUS,
ONERROR, etc.).

Check the different ONXXXXX function to learn the meaning of the EVTINFO
parameter.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 44 (128)

LSTERR

Operation Read | Write

Type Integer

Description Contains the code from the last BASIC error that occurred. If -1 is returned, this
means no error was found.

Check the BASIC Error Codes, p. 106

The LSTERR is automatically cleared (value -1) when an end of section is
reached (instruction END).

LSTERR can be cleared by setting the parameter to -1: SETSYS PRG,
"LSTERR", -1.

MDMRST

Operation Write

Type Integer

Description Force an hardware modem reset: SETSYS PRG, "MDMRST", 1

MSEC

Operation Read only

Type Integer

Description Time in MSEC since the device has booted. Maximum value is 134217727,
afterwards it drops to 0.

NBTAGS

Operation Read only

Type Integer

Description NBTAGS returns the number of tags defined in the device.

PPPIP

Operation Read | Write

Type String | Integer

Description This parameter returns the string corresponding to the current PPP IP address.

When the device is offline, the returned value is “0.0.0.0”.

When the device is online, the returned value is the dotted IP address allocated
for the PPP connection.

The parameter can be written to disconnect the device. The only accepted value
when writing in this parameter is 0: SETSYS PRG, "PPPIP", 0

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 45 (128)

PRIOH

Operation Read | Write

Type Integer

Description Used to change the script priority

PRION

Operation Read | Write

Type Integer

Description Used to change the script priority

PRIOT

Operation Read | Write

Type Integer

Description Used to change the script priority

RESUMENEXT

Operation Read | Write

Type Integer

Description This parameter controls the ONERROR action. Possible values are a
combination of:

• 1: Resume next mechanism is enabled

• 4: Do not execute ONERROR

• 8: Do not show error on virtual screen

This parameter is useful when testing the existence of a variable, file or other.

Example: Testing the existence of a file can be done by opening it and see if it
generated an error. The error result is accessible through LSTERR

RUNSRC

Operation Read only

Type Integer

Description When program is started, the source of the execution is given by this parameter:

• 1: Started from the web interface ‘Script Control’ window

• 2: Started by the FTP server because program has been updated

• 3: A ‘GO’ command has been executed from the script

• 4: Automatic program starts at the boot of the device

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 46 (128)

SCHRST

Operation Write

Type Integer

Description Clear all pending scheduled actions (except the action currently “in progress”).

Write only with the value 1: SETSYS PRG, "SCHRST", 1When Scheduled
Actions are cleared, they have the status “Action Canceled” which value is 21613.

SERNUM

Operation Read | Write

Type String

Description This parameter returns a string with the device serial number string.

TIMESEC

Operation Read only

Type Integer

Description This parameter returns the time elapsed since 1970-01-01 in seconds which can
be useful to compute time differences.

When this value is assigned to a float variable, the number is too big and rounding
will occur. To store this value, an integer variable should be used instead (i.e: a%) .

TRFWD

Operation Read | Write

Type String

Description Transparent forwarding IP address.

The parameter can be used to write or read the routing parameter. It is only active
when the PPP connection is established.

VPNIP

Operation Read only

Type String

Description Currently allocated VPN IP address. If the device is not connected to VPN, the
value is “0.0.0.0”

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 47 (128)

WANIP

Operation Read only

Type String

Description This parameter returns the string corresponding to the current WAN IP address.
Depending on the device configuration, it can be the WAN Ethernet, Wi-Fi or the
modem connection.

When the device is offline, the returned value is “0.0.0.0”.

If the device has performed a dynDNS request or an Internet connection check
(using the Internet connection wizard for example), then theWANIP parameter
will reflect the public IP address used for the Internet connection. For example, if
the device connects to Internet using a router, then theWANIP parameter will
reflect the public IP address used by this router.

3.31.3 Parameter Type: SYS
The fields edited within this group are the ones found in the config.txt file under the System sec-
tion on the web interface of the device.

Check also
Configuration Fields, p. 107

3.31.4 Parameter Type: COM
The fields edited within this group are the ones found in the comcfg.txt. It is also possible to tune
the modem detection.

Check also
Configuration Fields, p. 107

3.31.5 Parameter Type: INF
This group holds all information data about the device. All these fields are read only. The fields
displayed from this group are the ones found in the estat.htm file.

3.31.6 Parameter Type: TAG
The fields edited within this group are the ones found in the config.txt file under the section
TagList.

Check also
Configuration Fields, p. 107

3.31.7 USER
The fields edited within this group are the ones found in the config.txt file under the section
“UserList”.

Check also
Configuration Fields, p. 107

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 48 (128)

3.32 GO
Syntax
GO

Description
This command starts the execution of the program. This is equivalent to clicking “RUN” in the
BASIC IDE window.

This command is mainly useful for remote device operation through the use of “remote.bas”
FTP transfer.

3.33 GOSUB - RETURN
Syntax
GOSUB S1
S1:
...
RETURN

S1 the name of a label.

Description
When the GOSUB line is executed, the program continues but jumping to Label line. The pro-
gram executes the code until the RETURN line is met. The RETURN command modifies the
program pointer to the line immediately following the GOSUB Line.

It is possible to create a new section containing the Label. Sections are useful in order to divide
the program into smaller code snippets and help the reader to get a clear view of the software.

At the end of every section there is an invisible END but jumps are possible from section to
section.

Example 52: Use of the GOSUB

GOSUB NL3
PRINT "End"
END
NL3: PRINT "Beginning"
RETURN // Prints "Beginning" then "End"

GOSUB NL3 : PRINT "Never"
PRINT "End"
END
NL3: PRINT "Beginning"
RETURN // Prints "Beginning" then "Never" then "End"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 49 (128)

3.34 GOTO
Syntax
GOTO S1

S1 the name of the label.

Description
The execution of the program jumps to the label line. The label statement cannot be empty.

The GOTO command also allows starting the program without erasing all variables.

A string variable can be passed in a GOTO command.

Example 53: Jump to a Specific Label

GOTO MyLabel
PRINT "Hop" // "Hop" is never printed
Label:
...

a$ = "my_label"
GOTO a$
PRINT "Hop" // "Hop" is never printed
my_label:
...

3.35 HALT
Syntax
HALT

Description
This command stops the execution of the program. This is similar to clicking STOP in the BASIC
IDE window. This command is mainly useful for remote device operation through the use of “re-
mote.bas” FTP transfer.

Check also
GO, p. 48; REBOOT, p. 90

3.36 HEX$
Syntax
HEX$ E1

Description
The function returns a chain of 8 characters that represents the hexadecimal value of the E1
number.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 50 (128)

Example 54: Convert from DEC to HEX

a$= HEX$ 255 // a$ = 000000FF

Check also
BIN$, p. 23

3.37 HTTPX
The BASIC implemented in the device is capable of dealing with HTTP(S) request & response.

3.37.1 REQUESTHTTPX
Syntax
REQUESTHTTPX http[s]://S1, S2[, S3[, S4[, S5[, S6[, S7]]]]]

S1 the server.

It is the URL of the targeted request. For example: “192.168.0.10” or “www.
example.com”.

It is also part of the URL that constitute the query string. For example: “service” or
“12345/control?axis=x&val=1”

S2 the method.

It's the RESTAPI HTTP verb. This can be “Get”, “Post”, “Put”, “Patch”, “Delete”,
“Options”, “Head” or “Purge”.

S3 the headers.

The headers sent by the device through the request. For example: “ContentType=
application/json&XRequest =test”

S4 the post data.

The POST data can be separated either by an ampersand “&” using the
traditional querystring format [FieldName1=ValueName1] [&FieldNameX=
ValueNameX]. For example: “firstname=jack&lastname=nicholson”.

Or it can be separated by raw data. For example: “{\"myData\":21}”.

S5 the file data.

String for FILE data separated by an ampersand “&” using the traditional
querystring format and having each value corresponding to an Export Block
Descriptor: [FieldName1=ExportBlockDescriptor1]. For example: “pictures[]=
[$dtEV$fnevents.txt]&pictures[]=[$dtCF$fnconfig.txt]”.

S6 the file answer.

The file name inside /usr/ folder where the answer needs to be stored. For
example: “/usr/myfile”.

S7 the proxy.

This option indicates if the request should use a proxy or not. Accepts "PROXY"
or " " as value.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 51 (128)

Specifications
When the file-answer field is empty or not specified:

• the result of the request is saved in a buffer inside the memory. The information can then
be retrieved with the RESPONSEHTTPX command.

• there are three buffers: each buffer can handle a response body of max. 64KB. An HTTP
request error is produced if the response body is bigger than the max. size allowed.

Whenever the post-data field is specified without any file-data information, the default content
type header (if not specified in the header field) is

'Content-Type: application/x-www-form-urlencoded; charset=ISO-8859-1'

When using a “multipart/form-data” content type, it is not possible to set the boundary.

// Not supported
'Content-Type:multipart/form-data; boundary=--------myseparator'

3.37.2 RESPONSEHTTPX
Syntax
RESPONSEHTTPX S1[, S2]

S1 the parameter.

It is sending the info to retrieve. For example: “HEADER”, “STATUSCODE” or
“RESPONSE_BODY”

S2 the specific header.

If a specific header need to be retrieved. This works only when S1 is set to
“HEADER”.

Specifications
RESPONSEHTTPX is used to retrieve the information from a previous REQUESTHTTPX
command.

Use the ACTIONID (parameter from the GETSYS PRG) to specify the request:

RESPONSEHTTPX
"HEADER"

it returns all server headers with the format “HeaderName: value” separated by
CR+LF (ascii 13dec then 10dec).

RESPONSEHTTPX
"HEADER", "Specific-
Header"

it returns only “Specific-Header: value” or an empty string if not found.

RESPONSEHTTPX
"STATUSCODE"

it returns the request status code (“200”, “404”...) as a string.

RESPONSEHTTPX
"RESPONSE-BODY"

it returns the response body as a string that can contain NULL characters.

Example 55: Use of RESPONSEHTTPX

request:
REQUESTHTTPX "http://www.example.com/hello.php","GET"
actionID% = GETSYS PRG, "ACTIONID"
PRINT "request actionid is "; actionID%
END

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 52 (128)

onEvent:
eventId% = GETSYS PRG, "EVTINFO"
IF (eventId% = actionID%) THEN

SETSYS PRG, "ACTIONID", eventId%
stat% = GETSYS PRG, "ACTIONSTAT"
IF (stat% = 0) THEN
GOTO response

ELSE
PRINT "Error (ERROR = "+Str$(stat%) + ")"

ENDIF
ENDIF
END

response:
a$ = RESPONSEHTTPX "STATUSCODE"
PRINT "status: "; a$
a$ = RESPONSEHTTPX "HEADER"
PRINT "all headers: "; a$
a$ = RESPONSEHTTPX "HEADER", "Server"
PRINT "server header: "; a$
a$ = RESPONSEHTTPX "RESPONSEBODY"
IF (Len(a$) < 1000) THEN

PRINT "response body: "; a$
Else

PRINT "response body size: "; Len(a$)
ENDIF
END

3.38 IF, THEN, ELSE, ENDIF
This sequence of commands supports two different syntaxes: the short and long IF syntax.

3.38.1 Short Syntax
Syntax
IF N THEN EXPRESSION1[ELSE EXPRESSION2][ENDIF]

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 53 (128)

Description
The condition is the result of an operation returning an N integer.

• If N is 0, the condition is considered as false and the device executes the next line or the
ELSE EXPRESSION2 if available.

• If N is different than 0, the condition is considered as true and the device executes
EXPRESSION1.

If more than one instruction have to be executed, separate them with a colon “:”.

If N is an expression or a test, use parenthesis ().

The short IF syntax is used as soon as an item is found after the THEN statement. Even putting
a comment statement on the IF N THEN line will make the device consider it as a short IF
statement.

If ELSE EXPRESSION2 is expressed, then the ENDIF statement is mandatory.

Example 56: Short IF Syntax

IF (a < 10) THEN PRINT "a is lower than 10" : SETIO "MyTag", 1

3.38.2 Long Syntax
Syntax
IF N THEN

EXPRESSION1[
ELSE

EXPRESSION2]
ENDIF

Description
Short and long IF syntax can be mixed in the code but anything typed after the THEN statement
will lead to a short IF syntax interpretation.

Example 57: Long IF Syntax

IF (a < 10) THEN
PRINT "a is lower than 10" : MyTag@ = 1

ELSE
PRINT "a is bigger than 10" : MyTag@ = 0

ENDIF

3.39 INSTR
Syntax
INSTR I1, S1, S2

I1 the index in the string to search. Valid value goes from 1 to LEN S1).

S1 the string that will be searched in.

S2 the string to search for in S1

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 54 (128)

Description
The function returns an integer equal to the position of string S2 in string S1.

• If string S2 is found, the function returns a value from 1 to the length of S1. The returned in-
dex is 1 based.

• If string S2 is not contained in S1, the function returns 0.

The I1 parameter should be 1 to search the whole S1 string.

If I1 is higher than 0 then string S1 is searched starting at offset I1. The value returned is still
based on S1 offset.

Internally, the INSTR function uses the character “0” (0x00) as delimiter. This means that the
character “0” can not be searched with “INSTR”. The result will always be 1 even if there is no
“0” in the searched string.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 55 (128)

Example 58: Find a String Inside a String

INSTR 1, "AAABBC","BB" // Returns 4
INSTR 3, "AAABBC","BB" // Returns 4

B$ = CHR$(0)
A% = INSTR 1, A$, B$ // Always returns 1

3.40 INT
Syntax
INT F1

Description
Extract the integer part out of the number. There is no rounding operation.

Example 59: Extract an Integer

a = INT(10.95) // a equals 10.00, still float
A% = 10.95 // a equals 10, automatic type conversation

3.41 IOMOD
Syntax
IOMOD S1

S1 the tag reference (tag name, ID or index)

Description
This function returns '1' if the S1 tag value has been modified in the device since the last call of
the IOMOD command.

The call to this function resets the internal change tag flag to 0. It the variable doesn't change
anymore, the next call to IOMOD will return 0. A similar behavior can be achieved with the use
of ONCHANGE event handler.

Example 60: Get notified when Tag Has Changed

a% = IOMOD "MYTAG"
IF a% THEN PRINT "mytag has changed"

Check also
ONCHANGE, p. 70

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 56 (128)

3.42 IORCV
Syntax
IORCV S1[, I1]

S1 the IOServerName parameter.

I1 an optional additional parameter. Can be 0, 1, -1.

Description
The IOSEND and IORCV functions must be used together. They are used to send/receive cus-
tom IO server requests.

These functions can be used only if IO server is configured. Use IORCV function to read the IO
server response from an IOSEND request.

There are three transmission slots available. Using IORCV allows the clearing of those before
the three slots are busy. Requests are interlaced between gateway requests sent to the IO serv-
er and normal IO server polling operations.

• First Case

a$ = IORCV a%
a$ = IORCV a%, 0

This first case returns the result or the status of the request.

a% holds the request number and is the result of the IOSEND command. The possible returned
values:

a$ = “XXXXXXXXX” where “XXXXXXXXX” the result of the request

a$ = “#FREE” slot a% is free

a$ = “#RUN” slot a% is in progress

a$ = “#ERR” slot a% is done with error

If the request is done (all cases except “#RUN”), the slot is always freed after the IORCV a% or
IORCV a%, 0.

• Second Case

a$ = IORCV a%, -1

This is the same as the first case a$=IORCV a%, 0 except the slot is not freed if a request is
done.

• Third Case

b% = IORCV a%, 1

This returns the status of the IORCV command as an integer. The slot is not freed by this
parameter.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 57 (128)

The returned status can contain the following values:

b% = -2 slot a% is free.

b% = -1 slot a% is in progress.

b% = 0 slot a% is done with success.

b% > 0 slot a% is done with error.

b% < -2 lot a% is done with error – code type: warning.

In the situation where b% < 2, such warning codes mean “Read failed” on the serial link. These
warnings are flagged as internal and thus are not added in the event log. Those codes can be
very long; ie. -536893114

Example 61: IORCV

TestIO:
// The following creates the Modbus command
a$ = chr$(4) + chr$(0) + chr$(0) + chr$(0) + chr$(1)
// Initiate the Modbus request on slave 21
a% = IOSEND "MODBUS", "21", a$

Wait_IO_End:
b% = IORCV a%, 1 // read the status
IF b% = -1 THEN

GOTO Wait_IO_End // If idle then loop
ENDIF
b$ = IORCV a% // Read the result and free the slot
PRINT LEN(b$)
PRINT b$
END

3.43 IOSEND
Syntax
IOSEND S1, S2, S3

S1 the IO server name as it appears in the tag configuration page.

S2 the slave address as described in the device user manual for each IO server
section.

S3 the array of bytes with a protocol command, the content depends on the IO server.

Description
This function Returns a request number (slot) that must be used in IORCV to read the response
of the request.

The request result is read by using the IORCV function and uses a polling mechanism. It means
IORCV should be used to check via the request received through IOSEND that the slot is free.

There are three transmission slots available. Using IORCV allows the clearing of those before
the three slots are busy. Requests are interlaced between gateway requests sent to the IO serv-
er and normal IO server polling operations.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 58 (128)

Example 62: Get the Value of a Tag

a% = IOSEND IOServerName, Address, IoCommand

Check also
IORCV, p. 56

3.44 LEN
Syntax
LEN S1

S1 the string which length will be calculated

Description
This function returns the number of characters of a string.

Example 63: Calculate the number of characters

a$= "Hop "
a% = LEN a$
PRINT a% // Prints 4

3.45 LOGEVENT
Syntax
LOGEVENT S1[, S2]

S1 the string to log.

S2 the type of logging

Description
This command appends an event to the log file. The current time is automatically used for event
logging.

The S2 can take different ranges of value:

Range of values Description
0 … 99 Error
-99 … -1 Warning
100 … 199 Trace

Example 64: Log an event

logevent "Save this in log", 120
// Entry log: 978353046;"01/01/2001 12:44:06";"Save this in log"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 59 (128)

3.46 LOGGROUPIO
Syntax
LOGGROUPIO S1[, E1[, E2]]

S1 The group(s) of tags that should be logged.
Possible values: A, B, C and/or D

E1 The rounding time defines the time increment used to record the tag values.
Default value: 1
Possible values: 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60

E2 The time rounding method
Default value: 1
Possible values: 0 (nearest), 1 (truncate)

Description
This command logs all tags belonging to the specified group list S1 using the same timestamp
for the recording.

The Historical Logging will record times that are multiples of the E1 parameter.

E2 selects the method used to round the time:

• 0 : “nearest” will record the time as the nearest rounding time increment defined. Example:
LogGroupIO “A”,20,0 a tag value sampled at 10:34:16 will be recorded as 10:34:20 - 1 :
“truncate” will record the time as the last RoundingTime increment defined. Example: Log-
GroupIO “A”,20,1 a tag value sampled at 10:34:16 will be recorded as 10:34:00

Example 65: Record Group of Tags under the same Timestamp

// Log Group A each second
LOGGROUPIO "A"

// Log all groups each 20 seconds
LOGGROUPIO "ABCD", 20

// A tag sampled at 10:34:16 will be logged as 10:34:20
LOGGROUPIO "A", 20, 0

// A tag sampled at 10:34:16 will be logged as 10:34:00
LOGGROUPIO "A", 20, 1

3.47 LOGIO
Syntax
LOGIO S1

S1 the tag reference (tag name, ID or index)

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 60 (128)

Description
This commands forces the historical logging of S1 tag.

Before being able to force it, the tag must have historical logging enabled.

The point is logged at the time the LOGIO command is issued with its current value.

If the tag is configured for historical logging with logging dead band equal to –1 and time interval
equal to 0, no value will be logged automatically and it is possible to program a pure scripted
logging.

Example 66: Log a Tag Value by Script

LOGIO "mytag"

3.48 LTRIM
Syntax
LTRIM S1

Description
LTRIM returns a copy of a string with the leftmost spaces removed.

Example 67: TRIM a string

b$ = LTRIM a$

3.49 MEMORY
Syntax
MEMORY S1

S1 one of the 3 following values: "PROG", "VAR", "TOT"

Description
Depending on the value of S1, it will return the free memory of a specific zone:

• "PROG" returns the free memory of the program zone.

• "VAR" returns the free memory of the variable zone.

• "TOT" returns the free memory of "PROG" + "VAR"

3.50 MOD
Syntax
E1 MOD E2

Description
This computes the remainder of the division of E1 by E2.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 61 (128)

Example 68: Modulo Operation

1 MOD 2 // Returns 1
2 MOD 2 // Returns 0

Check also
Operators Priority, p. 16

3.51 MONTH
Syntax
MONTH E1|S1

E1 a date in integer format which represent the number of seconds since 1970-01-01

S1 a date in string format under the form: DD/MM[/YYYY HH:MM:SS] (i.e: "18/09/
2003 15:45:30").

Description
This function returns an integer corresponding to the value of the month (1 — 12) that matches
a defined time variable.

Do not call the function with a float variable of value or this would result to error “invalid
parameter”.

Example 69: Retrieve the Month

a$ = TIME$
a% = MONTH a$

b% = GETSYS PRG, "TIMESEC"
a% = MONTH b%

Check also
DAY, p. 25; DOW, p. 27; DOY, p. 27;WOY, p. 103

3.52 MQTT
The BASIC provides a MQTTAPI allowing one MQTTclient.

This client is asynchronous (based on events in background) and supports:

• MQTT protocol: version 3.1 and 3.1.1

• MQTT TLS encryption: TSL 1, TLS 1.1 and TLS 1.2

• MQTTclient authentication:

– user and password.

– certificate and private key.

• MQTTserver authentication using Certificate Authority.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 62 (128)

Syntax
MQTT "CMD"[, PARAMS]

Description
This is the main command to configure and manipulate the MQTTclient

All possible commands for the MQTTare listed hereunder.

Example 70: MQTT Publishing & Subscribing

Onwan '@WANAction(GETSYS PRG, "EVTINFO")'

Function WANAction($WANStatus%)
IF $WANStatus% = 1 Then
PRINT "WAN up"
@Start()

ENDIF
ENDFN

Function Start()
PRINT "starting MQTT"
@MosquittoInit()
@MosquittoConnect()

ENDFN

Function MosquittoInit()
MQTT "open", "ewon_flexy", "test.mosquitto.org"
MQTT "setparam", "log", "1"
MQTT "subscribe", "ewons/test/messages", 0

ENDFN

Function readMsg($msgID%)
IF $msgID% > 0 Then
msgTopic$ = MQTT "msgtopic"
msgData$ = MQTT "msgdata"
PRINT "received: "; msgTopic$; " -> "; msgData$
@readMsg(Mqtt("read"))

ENDIF
ENDFN

Function MosquittoConnect()
MQTT "connect"
ONMQTT '@readMsg(mqtt("read"))'
ONMQTTSTATUS '@MosquittoMQTTStatusChange(mqtt("status"))'

ENDFN

Function MosquittoMQTTStatusChange($status%)
IF $status% = 5 Then
PRINT "MQTT connected"
TSET 1, 5
ONTIMER 1, "@MosquittoMQTTPublish()"

ELSE
PRINT "MQTT disconnected"

ENDIF
ENDFN

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 63 (128)

Function MosquittoMQTTPublish()
msg$ = "test(" + STR$(n%) + ")"
MQTT "publish", "ewons/test/messages", msg$, 0, 0
n% = n% + 1

ENDFN

n% = 1

3.52.1 OPEN
Syntax
MQTT "open", S1, S2

S1 the client ID

S2 the broker host

Description
This command opens an MQTTconnection to a broker S2 and register itself to this broker using
the ID S1.

Example 71: MQTT OPEN API

MQTT "open", "ewon_flexy", "test.mosquitto.org"

3.52.2 SETPARAM
Syntax
MQTT "setparam", S1, S2

S1 the name of the parameter

S2 the value of the parameter

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 64 (128)

Description
Parameters can be set through this “setparam” request.

The “open” request must be called before using the “setparam” request.

Available Parameters

port The TCP port of the MQTT broker.
Default: 1883 (which is usually used for unencrypted MQTT).
Values: between 0 and 65535

username The username used to log in.

password The password used to log in.

keepalive The number of second between two MQTT heartbeats.
Default: 60
Values: between 0 and 65535

CAFile The path to the certificate authority file, used in PEM format.
For example: /usr/root-ca.pem

CAPath The path to a directory containing the certificates.
For example: /usr/certs/

CertFile The path to the client certificate, used in PEM format.
For example: /usr/flexy.crt.pem

KeyFile The path to the client private key, used in PEM format.
For example: /usr/flexy.private.key

CleanSession Indicates if the client session information (subscription, etc.) on the broker should
be stored between a disconnect/reconnect. Not all servers allows you to set this
flag to false.
Default: 1 (session is cleaned when disconnecting).
Values: 0 or 1

ProtocolVersion Choose the MQTT protocol version. Some servers only implements a single
version leaving beside the others.
Default: 3.1
Values: 3.1.1

TLSVersion Force the TLS version to use. Some servers only support a single type of TLS
and block the others.
Default: tlsv1.2
Values: tlsv1, tlsv1.1 or tlsv1.2

Log Allows the printing of the client verbose logs in the Realtime Log event of the
device.
Default: 0
Values: 0 or 1

MaxInFlight Allows the control of the maximum number of messages retained on the client
side.
Default: 20
Values: between 0 and 50

Example 72: MQTT OPEN API

MQTT "setparam", "port", "1883"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 65 (128)

3.52.3 CONNECT
Syntax
MQTT "connect"

Description
This command starts the connection with the broker.

The “connect” request must be called after the “open” and the “setparam” requests have both
been called.

The “connect” call is asynchronous, it is non blocking and is executed in the background. Time
to connect may vary depending on the device usage, the broker and the Internet connection.

3.52.4 CLOSE
Syntax
MQTT "close"

Description
This command stops the connection with the broker and removes all the subscriptions.

To use this call, the client should be connected. Check can be done by usingMQTT "status".

The “close” call is asynchronous, it is non blocking and is executed in the background. Time to
connect may vary depending on the device usage, the broker and the Internet connection.

3.52.5 STATUS
Syntax
MQTT "status"

Description
This command allows the retrieval of the current MQTTclient status.

Possible values are:

3 The MQTTclient is trying to connect.

4 The MQTTclient is disconnected.

5 The MQTTclient is connected.

Connection process can last a little (depending on the broker, Internet connection...). If errors
occur, they will appear during this connection attempt stage. If it is the first time the setup is
being configured, check the event log or real time log of the device for more information.

Example 73: Status of the MQTT Communication

status% = MQTT "status"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 66 (128)

3.52.6 PUBLISH
Syntax
MQTT "publish", S1, S2, E1, E2

S1 the topic

S2 the message

E1 the quality of service (QoS)

E2 the retained message feature.

Description
This call is asynchronous, it is non blocking and is executed in the background. Time to connect
may vary depending on the device usage, the broker and the Internet connection.

The QoS and retained messages feature rely on the broker capabilities. In this matter, make
sure that it is supported. If unsure, 0 should be used for both.

Quality of Service Values

0 Message is delivered without any confirmation, the message could be lost.

1 Message has been delivered at least once, the server acknowledges each message to the client.

2 Message has been delivered only once, 4-way handshake between client/server to ensure the
message is correctly delivered.

Retained Message Feature Values

0 Message should not be retained on broker side.

1 The broker should keep messages even after sending it to all current subscribers.

If a new subscription is made on the topic, this new subscriber will receive the retained
messages.

Example 74: Publish a Message through MQTT

MQTT "publish", "ewons/alarms", "test message", 0, 0

3.52.7 SUBSCRIBE
Syntax
MQTT "subscribe", S1, E1

S1 the topic

E1 the quality of service (QoS)

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 67 (128)

Description
This call is asynchronous, it is non blocking and is executed in the background. Time to connect
may vary depending on the device usage, the broker and the Internet connection.

Wildcards can be used in S1:

+ used to wildcard a topic level

“a/b/+/d” matches “a/b/c/d”, “a/b/c1/d”, “a/b/tags/d”...
doesn’t match “a/b/c”

“+/+/+/+” matches “a/b/c/d”, “d/a/c/b”...
doesn’t match “a/b/c”

used to wildcard the suffix

“a/b/#” matches “a/b/c”, “a/b/c/d”...
doesn’t match “a/c”

“#” matches anything

Topic levels can be of length 0 such as “a//topic” (topic level 2 is an empty string) and can lead to
non obvious wildcard matches or subscription behavior.

The QoS relies on the broker capabilities. In this matter, make sure that it is supported. If un-
sure, 0 should be used.

Quality of Service Values

0 Message is delivered without any confirmation, the message could be lost.

1 Message has been delivered at least once, the server acknowledges each message to the client.

2 Message has been delivered only once, 4-way handshake between client/server to ensure the
message is correctly delivered.

Example 75: Subscribe to a Topic through MQTT

MQTT "subscribe", "ewons/alarms", 0

3.52.8 READ
Syntax
MQTT "read"

Description
This function returns the ID of the oldest unread message received by the MQTTclient (based
on the FIFO system).

If the returned value is 0, it means that you don’t have any message.

• 0: no message available

• >0: message is out of the queue and available through “msgtopic” and “msgdata” calls.

To empty the client queue message,MQTT "read"must be called until 0 is returned.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 68 (128)

Example 76: Retrieve the Oldest Unread Message

msgID% = MQTT "read"

3.52.9 MSGTOPIC
Syntax
MQTT "msgtopic"

Description
This command gives you the topic of the read message.

Example 77: Retrieve the Topic of a Message

msgTopic$ = MQTT "msgtopic"

Check also
READ, p. 67

3.52.10 MSGDATA
Syntax
MQTT "msgdata"

Description
This command gives you the data (payload) of the read message.

Example 78: Retrieve the data of a Message

msgData$ = MQTT "msgdata"

Check also
READ, p. 67

3.53 NOT
Syntax
NOT E1

Description
This function returns “1” if E1 is equal to “0” otherwise the function returns “0”.

Example 79: Negation Function

IF NOT a% THEN PRINT " a% is worth 0 "

Check also
Operators Priority, p. 16

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 69 (128)

3.54 NTPSYNC
Syntax
NTPSYNC

Description
This function posts a request for clock resynchronization. It occurs even if this feature is dis-
abled in the configuration.

3.55 ONxxxxxx
There are multiple ONxxxxxx commands that can be used in the BASIC scripting.

These commands are used to register a BASIC action to perform in case of special conditions.
For each ONxxxxxx command, the action to execute is a string that is used as a BASIC com-
mand line.

When the condition is met, the command is queued in an execution queue and is executed
when on top of this queue.

These functions are:

ONTIMER Executed when one of the timers expires.

ONCHANGE Executed when a tag changes. Valid for a change of value or configuration.

ONALARM Executed when a tag alarm state changes.

ONERROR Executed when an error occurs during BASIC execution.

ONSTATUS Executed when a scheduled action is ended whether the state.

ONSMS Executed when a SMS is received (only for eWON with GSM/GPRS modem).

ONPPP Executed when the PPP connection goes online or offline.

ONVPN Executed when the VPN goes connected or disconnected.

ONWAN Executed when the WAN goes connected or disconnected.

ONDATE Executed when the defined pattern meets current the date / time.

ONMQTT Execution of a callback when the MQTTclient receives data.

ONMQTTSTATUS Registration of a callback when the MQTTclient connection status changes.

When the command line programmed is executed, a special parameter is set in SETSYS
PRG,"EVTINFO". The value of the parameter depends on the ONxxxxxx function and it can be
checked with the GETSYS command.

For all ONxxxx command, if the last parameter is omitted, the action is canceled.

Example 80: Canceling an ONxxxxx command

ONTIMER 1
// This will cancel any action set on TIMER 1

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 70 (128)

Check also
GETSYS, SETSYS, p. 40

3.55.1 ONALARM
Syntax
ONALARM S1, S2

S1 the tag reference (tag name, ID or index).

S2 the command line to execute in case the alarm status changes.

Description
This command executes the S2 command line when the alarm state of S1 changes. The EV-
TINFO parameter is set to the tag ID when command is called.

ONALARM will execute the command when the alarm status gets the value “2” (or above) which
means that ONALARM does not detect the "pre trigger" status (value = 1).

Example 81: ONALARM

ONALARM "MyTag", "GOTO MyTagAlarm"

Check also
ALSTAT, p. 22; GETSYS, SETSYS, p. 40; ONCHANGE, p. 70

3.55.2 ONCHANGE
Syntax
ONCHANGE S1, S2

S1 the tag reference (tag name, ID or index).

S2 the command line to execute in case the tag value or configuration changes.

Description
This command executes the S2 command line when the tag S1 changes. The change can be
its value or configuration. The EVTINFO parameter is set to the tag ID when command is called.

ONALARM will execute the command when the alarm status gets the value “2” (or above) which
means that ONALARM does not detect the "pre trigger" status (value = 1).

Example 82: ONCHANGE

ONCHANGE "MyTag", "GOTO MyTagChange"

Check also
IOMOD, p. 55; GETSYS, SETSYS, p. 40;

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 71 (128)

3.55.3 ONDATE
Syntax
ONDATE I1, S1, S2

I1 the planner entry index to set. This entry is contain between 1 to 10.

If S1 and S2 are not provided, this planner entry is deleted instead of being set.

S1 the timer interval.

S2 the command line to execute in case the tag value or configuration changes.

Description
The ONDATE function allows the definition of 10 planned tasks.

All ONDATE entries are deleted automatically when the program is stopped by the RUN/STOP
button.

The syntax of the S1 parameter is the following:mm hh dd MMM DDD

Syntax of the S1 parameter
Field Settings
mm This is the “minute” parameter. A number between 0 — 59
hh This is the “hour” parameter. A number between 0 — 23
dd This is the “day” parameter. A number between 1 — 31
MMM This is the “month” parameter. A number between 1 — 12 or the month name abbreviation

in English (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec).
DDD This is the “day of week” parameter. A number between 1 — 7 starting with 1 = Monday

and ending with 7 = Sunday or the day name abbreviation in English (mon, tue, wed, thu,
fri, sat, sun).

If S1 is provided, all 5 parameters are required! When used together, the dd and
DDD parameters operate as an OR operation: every dd of themonth OR DDD).

In addition, there are some operators to specify multiple date/time.

* The * (asterisk) operator specifies all possible values for a field from the table “Syntax of the S1
parameter”.

For example, an * in the hh time field would be equivalent to “every hour”.

, The , (comma) operator specifies a list of values.

For example: “1,3,4,7,8”. Be careful: space inside the list must not be used.

– The - (dash) operator specifies a range of values.

For example: “1-6” which is equivalent to “1,2,3,4,5,6”.

/ The / (slash) operator, called “step”, can be used to skip a given number of values.

For example, “*/3” in the hour time field is equivalent to “0,3,6,9,12,15,18,21”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 72 (128)

Example 83: ONDATE

ONDATE 1,"* * * * *","GOTO MyFunc"
// "GOTO MyFunc" every minutes.

ONDATE 1,"0 * * * *","GOTO MyFunc"
// "GOTO MyFunc" every hour.

ONDATE 1,"0 0 * * *","GOTO MyFunc"
// "GOTO MyFunc" on every day at midnight (00:00).

ONDATE 1,"*/15 * * * *","GOTO MyFunc"
// "GOTO MyFunc" every 15 minutes.

ONDATE 1,"15 7 1 1 *","GOTO MyFunc"
// "GOTO MyFunc" at 7:15, the first of january.
// Could have also be written as '15 7 1 jan *'

ONDATE 1,"15 8 * * 1","GOTO MyFunc"
// GOTO MyFunc" at 8:15, each monday.
// Could have also be written as '15 8 * * mon'

ONDATE 1,"0 8-18 * * 1-5","GOTO MyFunc"
// "GOTO MyFunc" at every hour between 8:00 and 18:00
//on every working day (Monday to Friday)

ONDATE 1,"0 6,7,18,19 * * *","GOTO MyFunc"
// "GOTO MyFunc" at 6, 7, 18 and 19 o’clock on every day.

ONDATE 1,"* * 13 * fri","GOTO MyFunc"
// "GOTO MyFunc" at every minutes on each Friday
// OR the 13th of the month (and not only on the Friday 13th).

ONDATE 1
// Will delete the planned entry 1

Check also
ONTIMER, p. 76; TSET, p. 100

3.55.4 ONERROR
Syntax
ONERROR S1

S1 the command line to execute when an error occurs during program execution.

Description
The EVTINFO parameter is set to the code of the error.

Example 84: ONERROR

ONERROR "GOTO TrapError"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 73 (128)

Check also
GETSYS, SETSYS, p. 40;

3.55.5 ONMQTT
Syntax
ONMQTT S1

S1 The command line to execute when data is exchanged with the MQTTclient.

Description
This command allows the execution of a callback when the MQTTclient receives data related to
an event, for example one or several messages received on a subscribed topic.

Example 85: ONMQTT

ONMQTT "GOTO ProcessMqtt" // Goto to a label

Check also
MQTT, p. 61

3.55.6 ONMQTTSTATUS
Syntax
ONMQTTSTATUS S1

S1 The command line to execute when the status of the MQTTclient changes.

Description
This allows the registration of a callback when the MQTTclient connection status changes. The
connection is asynchronous and the device handles the reconnections.

Each time the MQTTconnection status changes, S1 is called.

Usually, the callback is executed:

• on disconnection, related toMQTT "status" = 4

• on connection, related to MQTT "status" = 5

• and background transparent reconnection, related to MQTT "status" = 5

If there are a lot of reconnections, this could mean that the server keepalive and client keepalive
are not synced. This is not a problem, some servers will disconnect the clients if traffic isn’t de-
tected after a little time. This could happen for example if the client keepalive > server keepalive.
It would be the perfect application to keep a permanent MQTTconnection and reduce the heart-
beat data consumption.

Example 86: ONMQTTSTATUS

ONMQTTSTATUS "@AWSMQTTStatusChange()" // Load a function
ONMQTTSTATUS "GOTO ProcessMqttStatus" // Goto to a label

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 74 (128)

Check also
MQTT, p. 61

3.55.7 ONPPP
Syntax
ONPPP S1

S1 the command line to execute when the PPP connection goes online or offline.

Description
The EVTINFO parameter is set to one of the following values:

1 The PPP connection has gone online.

2 The PPP has gone offline.

Example 87: ONPPP

ONPPP "GOTO PppAction"

PppAction:
I% = GETSYS PRG, "EVTINFO"
IF I% = 1 THEN

PRINT "Online with address " ; GETSYS PRG, "PPPIP"
ELSE

PRINT "PPP Going offline"
ENDIF
END

Check also
GETSYS, SETSYS, p. 40;

3.55.8 ONSMS
Syntax
ONSMS S1

S1 The command line to execute when the device receives an SMS.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 75 (128)

Description
A typical use of the ONSMS syntax is to allow the device to send a read SMS receipt to the
SMS sender.

You can read the received SMS with GETSYS PRG function with

smsRead Holds 1 if there is a new SMS. Reading smsRead loads the other parameters.

Holds 0 if the SMS queue is empty.

smsFrom String holding the phone number of the sender.

smsDate String holding the date of SMS reception.

smsMsg String holding the SMS message.

Example 88: ONSMS

ONSMS "Goto Hsms"

Hsms:
a% = GETSYS PRG, "SmsRead"
IF (a%<>0) THEN

s% = s%+1
PRINT "SMS Nr: " ; s%
f$ = GETSYS PRG, "smsfrom"
PRINT "From: " ; f$
PRINT GETSYS PRG, "smsdate"
a$ = getsys prg,"smsmsg"
PRINT "Message: " ; a$
b$ = f$ + ",gsm,0"
c$ = "Message received: " + a$
sendsms b$, c$
goto HSms

ENDIF
END

3.55.9 ONSTATUS
Syntax
ONSTATUS S1

S1 The command line to execute when a scheduled action is finished.

Description
The EVTINFO parameter is set to the ACTIONID of the finished action when command is called.
This function can be used to track success or failure of scheduled actions.

Example 89: ONSTATUS

ONSTATUS "goto Status"

Check also
GETSYS, SETSYS, p. 40; PUTFTP, p. 87; SENDMAIL, p. 91; SENDSMS, p. 92; SENDTRAP, p.
93

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 76 (128)

3.55.10 ONTIMER
Syntax
ONTIMER E1, S1

E1 The timer number initiated by TSETcommand.

S1 The command line to execute when timer expires.

Description
This command executes S1 command line when E1 expires.

The EVTINFO parameter is set to the timer number when command is called.

Example 90: ONTIMER

ONTIMER 1, "goto Timer1"
ONTIMER 1, "LOGIO 'mytag'"

Check also
GETSYS, SETSYS, p. 40; TSET, p. 100

3.55.11 ONVPN
Syntax
ONVPN S1

S1 The command line to execute when the VPN connection status change:
connection or disconnection.

Description
The EVTINFO parameter is set to one of the following values:

1 The VPN connection has gone online.

2 The VPN connection has gone offline.

Example 91: ONVPN

ONVPN "goto VPN_Action"

VPN_Action:
i% = GETSYS PRG, "EVTINFO"
IF I%=1 THEN

PRINT "VPN Online"
ELSE

PRINT "VPN Going offline"
ENDIF
END

Check also
GETSYS, SETSYS, p. 40;

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 77 (128)

3.55.12 ONWAN
Syntax
ONWAN S1

S1 The command line to execute when the WAN connection status change:
connection or disconnection.

Description
The EVTINFO parameter is set to one of the following values:

1 The WAN connection has gone online.

2 The WAN connection has gone offline.

Example 92: ONWAN

ONWAN "goto WAN_Action"

WAN_Action:
i% = GETSYS PRG, "EVTINFO"
IF I%=1 THEN

PRINT "WAN online with address" ; GETSYS PRG, "WANIP"
ELSE

PRINT "WAN going offline"
ENDIF
END

Check also
GETSYS, SETSYS, p. 40;

3.56 OPEN
Files accessed in BASIC can be of 4 different types:

• Files from the /usr directory

• Serial communication link

• TCP or UDP socket

• Export Block Descriptor

There are two different modes of operation for the file access:

• Binary mode: file is read by blocks of bytes.

• Text mode: files are read or written as CSV files.

See the GET, p. 34 and PUT, p. 85 commands for a detailed difference between the BINARY
and TEXT mode outputs.

There are 3 operation types:

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 78 (128)

Operation types
Parameter
Value

Description

INPUT The file must exist. It is opened for a read only operation. The file pointer is set to the be-
ginning of the file.

OUTPUT The path must exist. If the file exists, it is erased first. The file is opened for write only
operation.

APPEND The path must exist. The file doesn't have to exist.
If the file does not exist, it is created (like the OUTPUT type). If the file exists, it is opened
and the write pointer is located at the end of the file. The file is opened for write only
operation.

When binary mode is used, the data written to the file are strings of characters that are consid-
ered as stream of bytes.

The GETcommand returns the amount of bytes requested. When text mode is used, the opera-
tion is completely different: the PUToperation is more like a PRINTcommand directed to the
file, the data is formatted as text and each data is separated by a “;” in the output file (strings
are exported between quotes).

The GETcommand works like a READ command: the file is read sequentially and each GET re-
turns one of the “;” separated element. The type of the data returned depends on the type of da-
ta read.

In both modes, files are read sequentially until the end of file is reached. The end of file can be
tested with the EOF function.

The device user flash file system allows up to 8 files to be simultaneously opened for read (even
twice the same file), and 1 file opened for write. If a file is opened for read, it cannot be opened
for write at the same time (and vice versa).

Running the program will close all files previously opened (not the GOTO).

Check also
CLOSE, p. 25; EOF, p. 29; GET, p. 34; PUT, p. 85

3.56.1 File OPEN /usr
Syntax
OPEN S1 FOR BINARY|TEXT INPUT|OUTPUT|APPEND AS E1

S1 describes the access to a file that is located on the device directories.

E1 the file number.

Description
After the OPEN operation, the file is referenced by E1 and no longer by its file name. There are
8 file numbers available. Once a file number is assigned to a file, it is allocated to that specific
file until the CLOSE command is issued.

S1 must respect the following syntax:

"file:/directory/filename"

This allows to read or write files in the /usr directories. The root, containing virtual files such as
config.txt, comcfg.txt... can not be accessed through this command.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 79 (128)

Example 93: OPEN a File in /usr folder

OPEN "file:/sys/test.dat" FOR BINARY INPUT AS 1
a$ = GET 1, 4
CLOSE 1
// This opens file 1 Reads 4 bytes

3.56.2 TCP or UDP Stream OPEN
Syntax
OPEN S1 FOR BINARY INPUT|OUTPUT AS E1

S1 describes the access to a stream.

E1 the file number.

Description
This command works only with BINARY.

After the OPEN operation, the file is referenced by E1 and no longer by its file name. There are
8 file numbers available. Once a file number is assigned to a file, it is allocated to that specific
file until the CLOSE command is issued.

S1 must respect the following syntax:

"tcp:Address:destPort[, TimeOut]"
"udp:Address:dest_Port[:srcPort][, TimeOut]"

Address a dotted IP address like 10.0.0.1 or a valid resolvable internet name such as www.ewon.biz.

destPort a valid port number from 1 to 65535.

srcPort if defined, the return port will be forced to the srcPort value (works only with UDP protocol).

if not defined, the return port is allocated automatically by the device TCP/IP stack.

TimeOut the number of seconds the device will wait to decide if the OPEN command failed (default :
75 sec).

For scheduled action, when the OPEN command is used to initiate a TCP connection, the com-
mand returns before the connection is actually opened.

A scheduled action is posted because opening the socket may require a dial out or take more
than a minute as the BASIC cannot be stopped during that time.

To check if the connection is established, 2 options are possible:

• Verify the scheduled action status by checking the PRG, ACTIONSTAT (See GETSYS,
SETSYS, p. 40).

• Read the file with GET: as long as the file is not actually opened, the function returns
#CLOSED#. When the function stops sending #CLOSED# the file can be read and written
for socket operations.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 80 (128)

Example 94: OPEN a Stream

OPEN "tcp:10.0.0.1:25" FOR BINARY OUTPUT AS 1
PUT 1, CHR$(13) + CHR$(10)
a$ = GET 1
CLOSE 1
// Opens socket to 10.0.0.1 port 25 for read/write access.
// Writes a CRLF then reads response.

3.56.3 COM Port OPEN
Syntax
OPEN S1 FOR BINARY INPUT|OUTPUT AS E1

S1 describes the access to a stream.

E1 the file number.

Description
This command works only with BINARY. Both INPUTand OUTPUTmodes allow to both read
and write on the COM port.

Attempting to use a serial port already taken by an IO server is not allowed and returns an error.

This command will open the serial port from 1 to 4 with the given line parameters.

After the OPEN operation, the file is referenced by E1 and no longer by its file name. There are
8 file numbers available. Once a file number is assigned to a file, it is allocated to that specific
file until the CLOSE command is issued.

S1 must respect the following syntax:

com:n,b,dpsh

n number between 1 to 4. The port number 1 is the front panel serial port, the 2 is the modem port.

b the baud rate

d the number of bits “7” or “8”

p the parity: “e”, “o” or “n”

s the number of stop bit “1” or “2”

h the handshaking where “h” is half duplex, “r” is yes Rts/Cts and “n” is No

Example 95: OPEN file on a COM port

OPEN "com:1, 9600, 8n1n" FOR BINARY OUTPUT AS 3
// Opens the Serial port 1 with speed 9600,
// bit 8, parity none, stop bit 1 and handshaking no.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 81 (128)

3.56.4 Export Block Descriptor OPEN
Syntax
OPEN S1 FOR TEXT|BINARY INPUT AS E1

S1 the export block descriptor. Must be under the form "exp:XXXXX", where XXXXX
is an EBD.

E1 the file number.

Description
After the OPEN operation, the file is referenced by E1 and no longer by its file name. There are
8 file numbers available. Once a file number is assigned to a file, it is allocated to that specific
file until the CLOSE command is issued.

When the EBD has been read (or not if the command is closed before the end), the CLOSE
command must be called to release memory.

The PUTcommand can not be used with this type of OPEN.

Example 96: OPEN with Export Block Descriptor

OPEN "exp:$dtAR $ftT" FOR TEXT INPUT AS 1

Loop:
a$ = Get 1
PRINT a$
IF a$ <> "" THEN GOTO Loop
CLOSE 1

In the example above, a$ = GET 1 can be called until it returns an empty string to read the con-
tent of the Export Block Descriptor. The data is then read by blocks of maximum 2048 bytes.

If the size needs to be reduced or increased, the call should be a$ = GET 1, y, where y is the
maximum number of bytes the function should return. If y is 0, it should be omitted.

Example 97: OPEN with Export Block Descriptor

OPEN "exp:$dtUF $ftT $fn/myfile.txt" FOR TEXT INPUT AS 1
a$ = GET 1
PRINT a$
CLOSE 1

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 82 (128)

3.57 OR
Syntax
E1 OR E2

Description
This operator does a bit-by-bit OR between the 2 integers E1 and E2.

The behavior depends on the nature of E1 and E2:

• When executed on float elements (float constant or float variable), the OR function returns
the logical OR operation.

• When executed on integer elements (integer constant or integer variable - like i%), the OR
function returns the bitwise OR operation

This behavior doesn’t apply on AND and XOR.

Example 98: OR Operator

1 OR 2 // returns 3
2 OR 2 // returns 2
3 OR 1 // returns 3

// Logical OR
a = 0.0
b = 0.0
ORResult = a OR b
PRINT ORResult // Prints 0.0

c = 0.0
d = 12.0
ORResult = c OR d
PRINT ORResult // Prints 1.0

Check also
Operators Priority, p. 16; AND, p. 23; XOR, p. 104

3.58 PI
Syntax
PI

Description
This function returns the PI number: 3.14159265

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 83 (128)

3.59 PRINT – AT
Syntax
PRINT [AT] [E1, E2] CA[1;[CA2]]

The PRINTcommand accepts multiple syntaxes:

PRINT CA displays CA followed by a new line

PRINT CA; displays CA without a new line

PRINTAT E1, E2 CA displays CA at the E1 column and at the E2 line

PRINT CA1;CA2;CA3... display the CA1, CA2... one following the other without going to the next line.

Description
The device has a “virtual screen” that can be used to inspect the content of values while the pro-
gram is running or to debug an expression.

The PRINTcommand cannot be followed immediately by parenthesis ().

Example 99: PRINTAT

PRINT "HOP1" ; "HOP2"

Check also
CLS, p. 25

3.60 PRINT #
Syntax
PRINT #x, CA

#x where x can have 2 values:

• 0: targets the user’s web page

• 1: targets the virtual screen

CA the variable, text, ... to print

Description
The PRINT command sends output to the virtual screen.

With the PRINT # command, output can be routed to another destination. When running ASP
code, the PRINTcommand can be used to build the content of the page sent to the user.

If the PRINT is sent to a web page, an HTML tag “
” is automatically added at the end of
line to pass to the next line. If the return cage shouldn’t be added, a “;” (semicolon) must be
added after the CA.

The PRINT command cannot be followed immediately by parenthesis ().

Example 100: PRINTwith target

PRINT #0, a$ // Sends a$ to the user's web page
PRINT #1, a$ // Works like PRINT a$ by sending to the virtual screen

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 84 (128)

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 85 (128)

3.61 PUT
The put command works completely differently if the file is opened in binary mode or in text
mode. The file must be opened for OUTPUTor for APPEND operation (APPEND is for /usr files
only).

The command description describes operation for /usr (text and binary modes), COM (always
binary) and TCP-UDP (always binary).

Check also
CLOSE, p. 25; EOF, p. 29; GET, p. 34; OPEN, p. 77

3.61.1 File – Binar Mode
Syntax
PUT E1, S1[; S2...]

E1 E1 is the file number: 1 — 8

S1 the string of char. to append to the file. The number of bytes written depends on
the length of the string.

S2 additional data to write. The length of a BASIC line limits the number of items.

The delimiter between the file number and the first item is a “,” (comma) but the separator be-
tween the first item and the optional next item is a “;” (semicolon). This is close to the PRINT
syntax.

Example 101: PUT for a File in Binary Mode

OPEN "/myfile.bin" FOR BINARY OUTPUT AS 1
PUT 1, "ABCDEF"; "GHIJKLMN"
CLOSE 1
// Now reopen and append
OPEN "/myfile.bin" FOR BINARY APPEND AS 1
PUT 1, "OPQRSTUVWXYZ"
CLOSE 1

3.61.2 File – Text Mode
Syntax
PUT E1, V1[; V2…][;]

E1 E1 is the file number: 1 — 8

V1 an element of type string, integer or float

S2 additional data to write (string, integer or float)

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 86 (128)

Description
The data is converted to text before being written to file. If data is of string type it is written be-
tween quotes, otherwise not. A semicolon is inserted between each data written to the file.

If the PUT command line ends with a semicolon, the sequence of data can continue on another
BASIC line. If the PUTcommand line ends without the semicolon character, the line is consid-
ered as finished and a CRLF (CHR$(13)+CHR$(10)) is added to the end of the file.

Example 102: PUT for a File in Text Mode

OPEN "/myfile.txt" FOR TEXT OUTPUT AS 1
PUT 1, 123; "ABC";
PUT 1, "DEF"
PUT 1, 345.7; "YYY"; "ZZZ"
CLOSE 1

// This would produce the file:
// 123;"ABC";"DEF"
// 345.7;"YYY";"ZZZ"

3.61.3 COM – Binary Mode
Syntax
PUT 1, S1

S1 string of data to write to serial port

Description
This command writes the S1 string to the serial port. The function returns only after all the data
has been sent.

The string can contain any byte by using the CHR$ function. Serial port cannot be used by an
IO server at the same time, or it would result in an “IO Error”.

Example 103: PUT to a COM port in Binary Mode

OPEN "/myfile.txt" FOR TEXT OUTPUT AS 1
PUT 1, 123; "ABC";
PUT 1, "DEF"
PUT 1, 345.7; "YYY"; "ZZZ"
CLOSE 1
// This would produce the file:
// 123;"ABC";"DEF"
// 345.7;"YYY";"ZZZ"

3.61.4 TCP/UDP – Binary Mode
Syntax
PUT E1, S1

E1 the file number returned by the OPEN function

S1 the string of data to write to the socket

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 87 (128)

Description
This command writes S1 to the socket. The string can contain any byte by using the CHR$
function.

The function returns only after all the data has been actually transferred to the stack.

The socket must be opened. The OPEN command returns immediately but generates a sched-
uled action. The PUT command will generate an IO error until the socket is actually opened.

When data is transferred to the TCP/IP stack, it does not mean that the data has been received
by the socket end point. It may take a little time for the data to be considered as undeliverable
and the socket to bet set in error mode.

3.62 PUTFTP
Syntax
PUTFTP S1, S2[, S3]

S1 The destination file name, to write on the FTP server.

S2 The file content of string type. This content may also be an Export Block
Descriptor content.

S3 The FTP server connection parameters.

If unused, the FTP server parameters from the “General Configuration” of the web
interface of the device will be used.

Description
This command puts a file on an FTP server. The content of the file is either a string or an Export
Bloc Descriptor.

The S3 parameters is as follow

[user:password@]servername[:port][,option1]

option1 This option sets the mode of transmission: value 1 is passive mode where value 2
is active mode.

If omitted, option1 = 0, and the mode will be set to active mode.

This command posts a scheduled action request for a PUTFTP generation.

When the function returns, the GETSYS PRG, "ACTIONID" returns the ID of the scheduled ac-
tion and allows the tracking of this action.

It is also possible to program an ONSTATUS action that will be called when the action is finished
(with or without success).

Example 104: Put a File on a FTP Server

// Post a file containing a custom text
a$ = "/ewon1/MyFile.txt"
b$ = "this is the text of the file"
PUTFTP a$, b$

// Post a file containing the event log
a$ = "/ewon1/events.txt"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 88 (128)

b$ = "[$dtEV]"
PUTFTP a$, b$

// Post a file with the Histo logging of Temperature tag
// on a defined FTP server.
a$ = "/ewon1/Temperature.txt"
b$ = "[dtHLftTtnTemperature]"
c$ = "user:pwd@FTPserver.com"
PUTFTP a$, b$, c$

Check also
GETSYS, SETSYS, p. 40; ONxxxxxx, p. 69; ONSTATUS, p. 75

3.63 PUTHTTP
Syntax
PUTHTTP S1, S2, S3, S4, S5[, S6]

S1 The connexion parameter with the format: [user:password@]servername[:port]

S2 The URI of the action (absolute path of the request URI).

S3 The text fields with the format: fieldname1=valuename1[&fieldnameX=
valuenameX&...]

S4 The file fields with the format: fieldname1=exportblockdescriptor1[&fFieldnameX=
exportblockdescriptorX&...]

S5 The error string.

S6 The proxy information

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 89 (128)

Description
The PUTHTTP command submits an HTTP form to a web server (just as if a web form was sent
on a website). The submitted forms may contain text fields and file fields.

The HTTP method used is the POST method (multipart/form-data). Content Type of the file
fields is always application/octet-stream. Files to upload are defined using the Export Block De-
scriptor syntax.

When this function returns, the GETSYS PRG function returns the ID of the scheduled action
and allows the tracking of this action. It is also possible to program an ONSTATUS action that
will be called when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the device performs the PUTHTTP
through a proxy server. The device will use the proxy server parameters configured in System
Setup / Communication / VPN Global.

There are some rules to follow in the syntax:

• All the parameters are mandatory. If a text field is not needed, the S3 parameter should be
transmitted as an empty string.

• When file fields aren’t needed, an empty string is used for S4. When no port is specified
HTTP port 80 is used.

• The HTTP server response will be checked against the S5. If the response contains S5,
the command will finish without success.

• Spaces in text fields and file fields are not allowed except inside export block descriptors
(inside the EBD brackets).

• One “ fieldname=valuename” section in the text field parameter may not exceed 7500
bytes, otherwise action will finish without success. This limitation does not apply for the file
fields.

The posting method used (chunked packets) is only correctly handled on IIS 6.0
and Apache web servers. Posting on IIS 5 doesn’t work (i.e: Windows XP).
Chuncked packets are not applied when the "PROXY" parameter is used because
most proxy servers do not accept them.

If PUTHTTP is used with the "PROXY" parameter, then device creates a
temporary file named “puthttp.proxy” in the /usr directory to store the data locally
before sending it towards the server via the proxy.

Example 105: PUTHTTP

b$ = "/textfields.php"
c$ = "firstname=james&lastname=smith"
e$ = "failed"

// Text fields form without HTTP basic authentication
a$ = "10.0.5.33"
d$ = ""
PUTHTTP a$, b$, c$, d$, e$

// Text fields with basic authentication and dedicated HTTP port
a$ = "adm1:adm2@www.ewon.biz:89"
d$ = ""
PUTHTTP a$, b$, c$, d$, e$

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 90 (128)

// Text fields + file fields
a$ = "10.0.5.33"
d$ = "pictures[]=[$dtEV $fnevents.txt]&pictures[]=[...]"
PUTHTTP a$, "/upload.php", c$, d$, e$

// Text fields without HTTP basic authentication through proxy
a$ = "10.0.5.33"
d$ = ""
f$ = "PROXY"
PUTHTTP a$, b$, c$, d$, e$, f$

Check also
GETHTTP, p. 39; GETSYS, SETSYS, p. 40; ONSTATUS, p. 75

3.64 REBOOT
Syntax
REBOOT

Description
This Basic keyword provides a very easy way to reboot the device.

A typical use of this command is by writing it into a file named “remote.bas”, saving it locally and
uploading this file on the FTP of the device to replace the existing “remote.bas” file. The device
will reboot directly.

3.65 REM
Syntax
REM free text

Description
This command enables the insertion of a line of comment in the program. The interpreter does
not consider the line.

Example 106: Insert a Remark

REM This line will not be considered
a% = 2 REM Neither will this second part of the line

Check also
// (comment), p. 21

3.66 RENAME
Syntax
RENAME S1, S2

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 91 (128)

Description
This command changes the name of file S1 to S2. The command only works in the /usr direc-
tory. Omitting “/usr/” before the filename will result in an IO error.

The file and directory names are case sensitive. The directory must exist before the call of the
function as there is no automatic directory creation.

Example 107: Rename a File

RENAME "/usr/OldName.txt", "/usr/NewName.txt"

Check also
ERASE, p. 29

3.67 RTRIM
Syntax
RTRIM S1

Description
This command returns a copy of a string with the rightmost spaces removed.

Example 108: Trim on the Right

b$ = RTRIM a$

Check also
LTRIM, p. 60

3.68 SENDMAIL
Syntax
SENDMAIL S1, S2, S3, S4

S1 The email address of the recipients (TO). Multiple recipients can be set,
separated by a semicolon.

S2 The email address of the recipient Carbon Copies (CC). Multiple recipients can be
set, separated by a semicolon.

S3 The subject of the message.

S4 The content of the message.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 92 (128)

Description
This command posts a scheduled action request for an email generation. When the function re-
turns, the GETSYS PRG, "ACTIONID" returns the ID of the scheduled action and allows the
tracking of this action.

It is also possible to program an ONSTATUS action that will be called when the action is finished
(with or without success).

The S4 content follows a special syntax that allows the insertion of an Export Block Descriptor
inside the content itself or as attachment. This syntax is:

• [EXPORT_BLOCK_DESCRIPTOR]: will be replaced by the corresponding data and put in-
side the message.

• &[EXPORT_BLOCK_DESCRIPTOR]: will be set as attachment.

Example 109: Send a Mail

m$ = "Event Log data are attached to this mail &[$dtEV]"
// Email content: "Event Log data are attached to this mail"
// Email attachment: events log

SENDMAIL "ewon@actl.be", "", "Subject", "Message"
SENDMAIL "ewon@actl.be", "", "Subject", m$

Check also
GETSYS, SETSYS, p. 40; ONxxxxxx, p. 69; ONSTATUS, p. 75

3.69 SENDSMS
Syntax
SENDSMS S1, S2

S1 The SMS recipients list.

S2 The content of the message (maximum 140 characters).

Description
This command posts a scheduled action request for an SMS generation.

When the function returns, the GETSYS PRG, "ACTIONID" returns the ID of the scheduled ac-
tion and allows the tracking of this action. It is also possible to program an ONSTATUS action
that will be called when the action is finished (with or without success).

For the syntax of S1, refer to the chapter “SMS on alarm configuration” in the General Reference
Guide.

Example 110: Send an SMS

// Send an SMS to 2 recipients.
d$ = "0407886633,ucp,0475161622,proximus"
d$ = d$ + ";" + "0407886634,gsm,0"
SENDSMS d$, "Message from eWON"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 93 (128)

Check also
GETSYS, SETSYS, p. 40; ONxxxxxx, p. 69; ONSTATUS, p. 75

3.70 SENDTRAP
Syntax
SENDTRAP E1, S1

E1 The first trap parameter.

S1 The second trap parameter.

Description
This command posts a scheduled action request for an SNMP trap generation.

The first parameter is sent on OID .1.3.6.1.4.1.8284.2.1.4.2

The second parameter is sent on OID .1.3.6.1.4.1.8284.2.1.4.1

–
-- Script information
-- ewonScript OBJECT IDENTIFIER ::= { prodEwon 4 }

scpUserNotif OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This is the text of the last trap sent by the Script"
::= { ewonScript 1 }

scpUserNotifI
OBJECT-TYPE SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This is a free parameters for script generated traps"
::= { ewonScript 2 }

When the function returns, the GETSYS PRG, "ACTIONID" returns the ID of the scheduled ac-
tion and allows the tracking of this action. It is also possible to program an ONSTATUS action
that will be called when the action is finished (with or without success).

Example 111: Send an SNMP Trap

// Send a trap with NotifI = 10 and Notif = Trap message
SENDTRAP 10, "Trap message"

Check also
GETSYS, SETSYS, p. 40; ONxxxxxx, p. 69; ONSTATUS, p. 75

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 94 (128)

3.71 SETIO
Syntax
SETIO S1, F1

S1 The tag reference (tag name, ID or index).

F1 The value that will be set to S1.

Description
This command modifies the value of a tag. The tag must be writable (not for the read-only Tags).

In many cases, this function is efficiently replaced by the TagName@ syntax.For example SETIO
"MyTag", 10.2 is equivalent to MyTag@=10.2

Example 112: Set a Tag Value

SETIO "myTag", 10.123

3.72 SETTIME
Syntax
SETTIME S1

S1 The new date / time to set.

Description
Updates the real time clock of the device.

S1 can contain only the time. In that case, the date is not modified. It can also contain only a
date. In that case, the time is set to 00:00:00

An event is generated in the events log when using this command.

Example 113: Set the Date and / or Time

SETTIME "13/12/2017" // Time is set to 13/12/2017 00:00:00
SETTIME "13/12/2017 12:00" // Time is set to 13/12/2017 12:00:00
PRINT TIME$ // Returns for example "15/01/2000 07:38:04"
SETTIME "12:00" // Time is set to 15/01/2017 12:00:00

Check also
TIME$, p. 99

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 95 (128)

3.73 SFMT
Syntax
FCNV E1|F1, EType[, ESize, SFormat]

E1|F1 The integer or float to format into string.

EType The parameter determining the type of conversion.

ESize The size of the string to convert.

SFormat The format specifier for the conversion

Description
Converts a number (float or integer) to a formatted string. The type of conversion is determined
by the EType parameter.

If ESize is equal to 0 (or negative) with an SFormat present, then ESize is the size of the output
string as formatted.

If ESize is positive, SFMTwill produce a string of ESize bytes.

Etype value Conversion type
1 convert float number to string holding the IEEE representation (MSB first)
2 convert float number to string holding the IEEE representation (LSB first)
10 convert integer to string (MSB first)
11 convert integer to string (LSB first)
20 format float number using an SFormat specifier
30 format integer number using an SFormat specifier
40 format time as integer into time as string

Each of the EType is explained and described in the following sub-chapters.

Check also
FCNV, p. 30

3.73.1 Convert Float to an IEEE Representation
The IEEE float representation use four bytes (32 bits).

Fig. 2 Conversion to an IEEE Float

EType is equal to 1 or 2.

The string could be LSB (Least Significant Byte) first which will convert FloatNum to a string
holding the IEEE representation with MSB (Most Significant Byte) first.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 96 (128)

a$ = SFMT FloatNum, 1
a$(1) // MSB which represents Exponent + Sign
...
a$(4) // LSB which represents Mantissa

The string could also be MSB first which will convert FloatNum to a string holding the IEEE rep-
resentation with LSB first

a$ = SFMT FloatNum, 2
a$(1) // LSB which represents Mantissa
...
a$(4) // MSB which represents Exponent + Sign

Example 114: Conversion from an IEEE Float Variable

ieee = -63.456
a$ = SFMT ieee, 1
// a$(1) = 194; a$(2) = 125; a$(3) = 210, a$(4) = 242

a$ = SFMT ieee, 2
// a$(1) = 242; a$(2) = 210; a$(3) = 125; a$(4) = 194

3.73.2 Compute an Integer to a String
Convert an integer value to a string holding the bytes array representation of this integer.

This representation can be MSB (Most Significant Byte) first or LSB (Least Significant Byte) first.

The ESize parameter is required, it is the size of the returned string (it can be 1, 2, 3 or 4).

Example 115: Compute an Integer to a String

a% = 1534
a$ = SFMT a%, 10, 4
// a$(1)=0; a$(2)=0; a$(3)=5; a$(4)=254

a$ = SFMT a%, 11, 4
// a$(1)=254; a$(2)=5; a$(3)=0; a$(4)=0

3.73.3 Convert a Float to a String using an SFormat Specifier
Convert a float number to a string using a format specifier.

The LRC computation is the sum of all bytes modulo 256.

The ESize parameter is required. It is the size of the returned string. Use 0 to let the device set
the length.

The SFormat parameter is required. It is the format specifier string and is like "%f" or "%.5g".

The syntax for the float format specifier is as follow

%[flags][width][.precision]type

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 97 (128)

type “f” or “F”: prints a float in normal (fixed-point) notation.

“e” or “E”: prints a float in standard form ([-]d.ddd e[+/-]ddd).

“g” or “G”: prints a float in either normal or exponential notation (lowercase or
uppercase), whichever is more appropriate for its magnitude.

This type differs slightly from fixed-point notation as insignificant zeroes on the
right side of the decimal separator are not included. Also, the decimal point is not
included on whole numbers.

flags “+”: always denote the sign “+” or “-” of a number (the default is to omit the sign for
positive numbers).

“0”: use 0 to left pad the number.

width “number”: set the length of the whole string for padding. Only needed when flag
“0” is used.

.precision “number”: the decimal portion precision of the output that should be expressed in
number digits.

Example 116: Convert a Float to a String using an SFormat Specifier

MyVal = 164.25
a$ = SFMT MyVal, 20, 0, "%f" // a$ = "164.250000"
a$ = SFMT MyVal, 20, 0, "%012.3f" // a$ = "00000164.250"
a$ = SFMT MyVal, 20, 0, "%e" // a$ = "1.642500e+02"

3.73.4 Convert an Integer to a String using an SFormat Specifier
Convert an integer number to a string using a format specifier.

The ESize parameter is required. It is the size of the returned string. Use 0 to let the device set
the length.

The SFormat parameter is required. It is the format specifier string and is like "%d" or "%o".

%[flags][width]type

type “d”: convert into integer notation.

“o”: convert into Octal notation.

“x” or “X”: convert into Hexadecimal notation (lowercase or uppercase).

flags “+”: always denote the sign “+” or “-” of a number (the default is to omit the sign for
positive numbers).

“0”: use 0 to left pad the number.

width “number”: set the length of the whole string for padding. Only needed when flag
“0” is used.

Example 117: Convert an Integer to a String using an SFormat Specifier

a% = 2568
a$ = SFMT a%, 30, 0, "%010d" // a$ = "0000002568"
a$ = SFMT a%, 30, 0, "%o" // a$ = "5010" OCTAL notation
a$ = SFMT a%, 30, 0, "%X" //a$ = "A08"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 98 (128)

3.73.5 Convert Time as Integer into Time as String
Convert an integer holding the number of seconds since “01/01/1970 00:00:00” into a string
holding a time in the format “dd/mm/yyyy hh:mm:ss”.

If the provided time is not an integer, the function will return a syntax error. If a float parameter is
passed, it must be converted to an integer value first. Float value is not accurate enough to hold
the big numbers used to represent seconds since “1/1/1970”, this leads to a lost of precision
during time conversion.

Example 118: Convert Time as Integer into Time as String

a$ = SFMT 0, 40 // a$ = "01/01/1970 00:00:00"

a% = 1000000000
a$ = SFMT a%, 40 // a$ = "09/09/2001 01:46:40"

3.74 SGN
Syntax
SGN F1

Description
This function returns the sign of the provided float:

• If F1 is > 0, the function returns 1.

• If F1 = 0, the function returns 0.

• If F1 is < 0, the function returns -1.

Example 119: Get the Sign of a Float

SGN (-10) // Returns -1
SGN (-10.6) // Returns -1
SGN 10 // Returns 1

3.75 SQRT
Syntax
SQRT F1

Description
This function returns the square root of F1. If an integer is supplied, the returned value will be a
float.

Example 120: Get the Square Root of a Tag

SQRT 16 // Returns 4

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 99 (128)

3.76 STR$
Syntax
STR$ F1|E1

Description
The function returns the character string related to an E1 or F1 number.

Example 121: Get the Character String

a% = 48
a$ = STR$ a% // a$ is worth "48"

Check also
VAL, p. 101

3.77 TIME$
Syntax
TIME$

Description
This command returns the string with the current date and time. The output format is “dd/mm/
yyyy hh:mm:ss”.

The number of characters in the returned string is constant (19).

The GETSYS command provides a method to return the current time as a number of seconds
since 1/1/1970. The SFMTand FCNV functions allow the conversation between time (string)
and time (integer).

Example 122: Get the Current Time

PRINT TIME$ // Print for example 13/12/2017 11:38:58
a$ = TIME$

Check also
FCNV, p. 30; SETTIME, p. 94; SFMT, p. 95

3.78 TGET
Syntax
TGET E1

E1 The number of the timer (1 to 4).

Description
This command returns N (>0) if the timer expires and then resets the value. N is the number of
times the timer has expired.

It returns “0” if the timer did not expired since the last call to TGET.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 100 (128)

Example 123: Read a Timer with TGET

// Timer 1 minute
TSET 1, 60

Label1:
IF NOT TGET 1 THEN GOTO LABEL1

Check also
ONTIMER, p. 76; TSET, p. 100

3.79 TSET
Syntax
TSET E1, E2

E1 The number of the timer (1 to 4).

E2 The value in seconds of the timer.

Description
This function initializes the timer E1 at an E2 time base (in seconds). The timer is read by TGET.

To stop a timer, E2 must be set to 0.

Example 124: Set a Timer associated with an Action

// Timer 1 minute
TSET 1, 60

Label1:
IF NOT TGET 1 THEN GOTO LABEL1

Check also
ONTIMER, p. 76; TGET, p. 99

3.80 TYPE$
Syntax
TYPE$(Tag|Var)

Tag|Var The name of the tag or variable.

Description
This command returns the nature of the tag or the variable. Those values can be: “string”, “float”
or “integer”.

As the variables are already typed, it makes more sense to use this command with tags.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 101 (128)

3.81 VAL
Syntax
VAL S1

Description
The function evaluates the character string and returns the corresponding expression.

VAL is a function that usually takes an expression and returns a real after the expression is
evaluated. It can also evaluate an expression that returns a string.

Example 125: Evaluate a Character String

a$ = "12"
a% = VAL("10" + a$) // a% equals 1012
a$ = "abc"
b$ = "efg"
c$ = val("a$ + b$") // c$ equals "abcefg"

Check also
STR$, p. 99

3.82 WAIT
Syntax
WAIT N1, S1[, N2]

N1 The File number to wait on.

S1 The operation to execute (max 255 char).

S2 The timeout in seconds. If omitted, the default is 60 seconds.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 102 (128)

Description
TheWAITcommand is used to monitor events on files. The instruction would be: wait for data
available on N1 (or timeout) then execute the S1 operation.

The monitored events are the data received on TCP and UDP socket

TheWAIT function registers a request to wait for the event, it will not block until the event
occurs.

When theWAIT function calls the operation, it will preset the EVTINFO, with the result of the
operation:

EVTINFO Signification
> 0 The event occurred and read can follow:

• =1: Read is pending

• =2: Ready for Write

• =3: Ready for Write and Read is pending
If Read is pending, the a$ = GET N1 function will be used. In case the GET function re-
turns an empty string, it means that there is an error on the socket (either the socket
was closed by the other party or the socket is not writable). Following this error, the file
should be closed because it is not more valid.

-1 The wait operation was aborted because of an error on the file monitored (for example
the file was closed).

-2 The condition was not met during the wait operation (timeout).

A maximum of 4WAITcommands can be occurring at the same time.

If aWAITcommand is pending on a file and anotherWAITcommand is issued on the same file,
an “IO Error” error will occur.

Example 126: Monitor Events using WAIT

// This example concerns TCP socket
// and connects to a server running the ECHO protocol
Tw:
CLS
CLOSE 1
OPEN "tcp:10.0.100.1:7" FOR BINARY OUTPUT AS 1
o% = 0

wo:
a% = GETSYS PRG, "actionstat"
IF (a%=-1) THEN GOTO wo

PUT 1, "msg_start"
WAIT 1, "GOTO rx_data"

END

rx_data:
a% = GETSYS PRG, "evtinfo"
IF (a%>0) THEN
PRINT "info:" ; a%
a$ = GET 1
PRINT a$
PUT 1, "abc" + Str$(o%)
o% = o% + 1
WAIT 1, "GOTO rx_data"
ELSE

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 103 (128)

PRINT "error:" ; a%
ENDIF

3.83 WOY
Syntax
WOY E1|S1

E1|S1 The date in integer format (number of seconds since 1/1/1970) or string format
("18/09/2003 15:45:30").

Description
This function returns an integer corresponding to the “ISO8601 Week-Of-Year” number that
matches a specified time variable.

The function shouldn’t be called with a float variable as this would result in an error “invalid
parameter”.

Example 127: Get the Week of Day

a$ = TIME$
a% = WOY a$

b% = GETSYS PRG,"TIMESEC"
a% = WOY b%

Check also
DAY, p. 25; DOW, p. 27; DOY, p. 27;MONTH, p. 61

3.84 WRITEEBD
Syntax
WRITEEBD S1, S2

S1 An Export Block Descriptor (EBD) in a string format.

S2 The file path the EBD content will be streamed in.

Description
This command streams an Export Block Descriptor (EBD) to the filesystem using a scheduled
action. It returns an action ID.

The syntax of an EBD is explained in the General Reference Guide corresponding to the device.

Example 128: Use an EBD

WRITEEBD "$dtEV", "/usr/myEvent.txt"

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

List of Keywords 104 (128)

3.85 XOR
Syntax
E1 XOR E2

S1 the tag reference (tag name, ID or index)

Description
This command returns the bitwise XOR comparison of E1 and E2.

a XOR b returns 1 if a is true or if b is true but not if both of them are the same value.

Example 129: XOR Operator

1 XOR 2 // Returns 3
2 XOR 2 // Returns 0

Check also
Operators Priority, p. 16; AND, p. 23; OR, p. 82

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Debugging 105 (128)

4 Debugging
The BASIC IDE comes with an integrated console.

This means that the debugging can be performed directly within the code.

Fig. 3 Interface of the BASIC IDE

Debug interface of the BASIC IDE
Explanation
1 This is the general menu for the debugging. It allows to

• Pause, Continue and Abort

• Perform step by step action

• Remove all breakpoints

2 This icon shows / hides the console frame (number 5).
3 Manually point out the line the debugger should stop on.
4 Control the flow of the BASIC script: play/resume, pause, perform step by step action.
5 The console frame provides more advanced actions such as:

• sort the different types of log (error, command or print)

• see the result of functions, commands, …

• manually trigger actions such as functions, label, ...
Multi-lines debugging is not allowed.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

BASIC Error Codes 106 (128)

5 BASIC Error Codes
The following table lists the error codes returned in the ONERROR command.

Error Code Error Name
0 syntax error
1 “(or)” expected
2 no expression present
3 “=” expected
4 not a variable
5 invalid parameter
6 duplicate label
7 undefined label
8 THEN expected
9 TO expected
10 too many nested FOR loops
11 NEXTwithout FOR
12 too many nested GOSUBs
13 RETURN without GOSUB
14 out of memory
15 invalid var name
16 variable not found
17 unknown operator
18 mixed string&num operation
19 Dim index error
20 “,” expected
21 number expected
22 invalid assignment
23 quote too long
24 var or keyword too long
25 no more data
26 reenter timer
27 label not found
28 operation failed
29 ENDIF expected
30 ENDIF without IF
31 ELSE without IF
32 math error
33 IO Error
34 end of file
35 val in val

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 107 (128)

6 Configuration Fields
This section describes the fields that can be used in combination with the GETSYS and
SETSYS commands. All the fields are readable and writable (unless specified otherwise).

Fields are divided in several sections:

• System: referring to the config.txt file, accessible with the “SYS” keyword.

• Communication: referring to the comcfg.txt, accessible with the “COM” keyword

• User list: referring to the config.txt file, accessible with the “USER” keyword.

• Tag list: referring to the config.txt file, accessible with the “TAG” keyword.

Before using parameters from one of the sections, it must first be loaded with the SETSYS
SYS, xxxcommand

Example 130: Declare SETSYS before GETSYS

// Setting the identification of the device
// Printing the information
// Parameter = Identification, Information
SETSYS SYS, "LOAD"
SETSYS SYS, "Identification", "10.0.0.53"
PRINT GETSYS SYS, "Information"
SETSYS SYS, "SAVE"

6.1 SYS
This section describes the fields found in the config.txt file and that can be used with the
GETSYS and SETSYS.

6.1.1 SYS Parameters
Name Description Default Value Acceptable Values
System File structure NA NA
Identification eWON Identification [empty] Text
Information General information [empty] Text
PostWithPPP NUA NUA NUA
SmtpServerPort SMTP Server Port 25 Integer
SmtpServerAddr SMTP Server Address

Examples: smtp.domain.com or mail.do-
main.com or an IP address

[empty] Text or IPv4 dotted decimal

SmtpUserName EMail "From" User name:
Example: name@provider.ab

[empty] Text

AlRetrigInt Action retrig. Interval 86400 Integer [seconds]
NtpEnable Enable NTP clock update 0 0 Disabled

1 Enabled
NtpServerAddr NTP Server Address

Examples: www.domain.com or an IP
address

[empty] Text or IPv4 dotted decimal

NtpServerPort NTP Server Port 123 Integer
NtpInterval Update time interval 1440 Integer [minutes]
PrgAutorun Script starts at eWON boot 0 0 False

1 True
FormatRequest NUA NUA NUA
NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 108 (128)

Name Description Default Value Acceptable Values
MbsBaudRate Modbus IO Server Baud Rate 0

(disabled)
0, 600, 1200, 2400, 4800,
9600, 19200, 38400,
57200

Mbs2StopBit Modbus IO Server Stop Bit(s) 0 0 1
1 2

MbsParity Modbus IO Server Parity 0 0 None
1 Even
2 Odd

MbsReplyTO Modbus IO Server Reply Timeout 1000 Integer [msec]
MbsPR1:, PR2:,
PR3

Modbus IO Server Poll Rate Topics A, B,
C

2000 Integer [msec]

TimeZoneOffset TNTP: GMT Offset -7200 Signed Integer [seconds]
MbsAddress Modbus TCP Server Unit Address 100 Integer
MbsSlaveEn Modbus TCP Server Slave 1 0 Disabled

1 Enabled
DecSeparator Decimal separator 46 46 TBD

Page1 User Page 1 Default Text
Page2 User Page 2 System Text
Page3
(valid until page
10)

User Page 3 to 10 [empty] Text

IOSrv0
(valid until server
9)

Configured IO Servers EWON [empty] MEM, EWON, MODBUS,
NETMPI, SNMP, DF1,
FINS,
ABLOGIX, SNMP, S7200,
QWAVE, HITACHI,
MELSEC

IOSrvData0
(valid until server
9)

IO Server settings [empty] Depending on IO Servers
configured with previous
field.

SecureUsr Enable user web pages security 1 0 Disabled
1 Enabled

HomePage User defined web home page
Example: index.htm or an IP address

[empty] Text, IPv4 dotted decimal
or a viewON synopsis
name

MbsSMB1
(valid until unit 3)

MODBUS IO Server Slave Address (Unit
Id): for topic A to C

256 Integer <=256

MbsSIP1
(valid until ad-
dress 3)

MODBUS IO Server IP address 0.0.0.0 IPv4 dotted decimal

FtpServerPort The port of the targeted FTP server 21 Integer
FtpServerAddr The address of the targeted FTP server [empty] IPv4 dotted decimal
FtpUserName The username of the targeted FTP

server
[empty] Text

FtpPassword The password of the targeted FTP server #_1_//8= Text
SmtpAllowB64 Indicates if the SMTP destination server

supports base64 encoding.
1 True
0 False

MbsEn1
(valid until topic 3)

Modbus IO Server Enable Topic A, B and
C

0 0 Disabled
1 Enabled

HTTPC_SDTO HTTP client operations
GetHTTP or PutHTTP - SEND timeout

[empty] Integer [seconds]

HTTPC_RDTO HTTP client operations
GetHTTP or PutHTTP - READ timeout

[empty] Integer [seconds]

HTTPC_DEB Enable the HTTP client debug 1 True
0 False

FTPC_SDT FTP client operations
GetFTP or PutFTP - SEND timeout

[empty] Integer [seconds]

NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 109 (128)

Name Description Default Value Acceptable Values
FTPC_SCTO FTP client operations

GetFTP or PutFTP - Connect timeout
[empty] Integer [seconds]

FTPC_ACTO FTP client operations
GetFTP or PutFTP - Accept timeout
(=connect in passive mode)

[empty] Integer [seconds]

FTPC_RDTO FTP client operations
GetFTP or PutFTP - READ timeout

[empty] Integer [seconds]

UNACT_TO Scheduled action timeout. [empty] Integer [seconds]
Possible value: [0 — 7200]

DNS_SRTO DNS server reply timeout [empty] Integer [seconds]
DNS_TTL DNS server TTL [empty] Integer [seconds]
DNS_ERRMSK The mask DNS errors in logs [empty] TBD
HTTP_REQTO The setup of the watchdog related to

HTTP requests thread to avoid reboots
[empty] Integer [seconds]

SnmpCom1
(valid until com-
munity 5)

SNMP Community 1 to 5 [empty] Text

SnmpR1
(valid until com-
munity 5)

SNMP Community 1 to 5: Read 0 0 Disabled
1 Enabled

SnmpW1
(valid until com-
munity 5)

SNMP Community 1 to 5: Write 0 0 Disabled
1 Enabled

SnmpAlwAll Accept SNMP from any host 1 0 Disabled
1 Enabled

SnmpHIp1
(valid until host 5)

SNMP Hosts > Host1 to 5 IP address [empty] IPv4 dotted decimal

SnmpHCom1
(valid until host 5)

SNMP Hosts > Host1 to 5 Community [empty] Text

SnmpHTrap1
(valid until host 5)

SNMP Hosts > Host1 to 5 Trap 0 0 Disabled
1 Enabled

SnmpHAlw1
(valid until host 5)

SNMP Hosts > Host1 to 5 Allow Access 0 0 Disabled
1 Enabled

MbsBits MODBUS IO Server: Data Bits
The MbsBits parameter specifies how
the Modbus IO Server will read the bytes.

8 7 or 8

FtpUsePasv FTP Client: Use Passive Mode 0 0 Disabled
1 Enabled

AlMaxTry Alarm > Retry action: 1 Integer
AlRetryInt Alarm > Action retry interval: 120 Integer [seconds]
HWMode MODBUS IO Server: HW mode 1 1 Half Duplex

2 Full Duplex
HW
Handshaking

3 Full Duplex
NO
Handshaking

InitClRepLvl Event Logging Level - Initialisation 3 1 error
2 warning
3 trace

ConfigClRepLvl Event Logging Level - Configuration 3 1 error
2 warning
3 trace

IoSrvClRepLvl Event Logging Level - IO Server 3 1 error
2 warning
3 trace

NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 110 (128)

Name Description Default Value Acceptable Values
ModemClRepLvl Event Logging Level - Modem

Communication
3 1 error

2 warning
3 trace

IpClRepLvl Event Logging Level - IP Communication 3 1 error
2 warning
3 trace

SerialClRepLvl Event Logging Level - Serial
Communication

3 1 error
2 warning
3 trace

KernelClRepLvl Event Logging Level - Kernel 3 1 error
2 warning
3 trace

WebClRepLvl Event Logging Level - Web Interface 3 1 error
2 warning
3 trace

SecuClRepLvl Event Logging Level - Security 3 1 error
2 warning
3 trace

OthersClRepLvl Event Logging Level - Others 3 1 error
2 warning
3 trace

ComCfg1 Used to filter exportable status of VCOM
configuration

[empty] TBD

ComCfg2 NUA NUA NUA
HomePageType User defined web home page 0 0 User

1 ViewON
SmtpAuthUser SMTP > User name [empty] Text
SmtpAuthPass SMTP > Password #_1_//8= Text
IpMbsSrvPort Modbus TCP Port 502 Integer
IpEipSrvPort EtherNet/IP Port 44818 Integer
NLSeparator The separator for .txt config file export 1 0 0xB6, PI AS-

CII char
1 new line

IpIsoSrvPort ISOTCP Port 102 Integer
IpFinsSrvPort FINS Port 9600 Integer
LayDir NUA NUA NUA
TagPollMode Disable Tags in Error 0 0 Disabled

1 Enabled
DMClientId Data Management - eWON ID [empty] eWON ID specified on the

acquisition server.
DMClientPwd Data Management - Password #_1_//8= text
DMSrvUrl Data Management - Server URL

(of the acquisition server)
[empty] URL

DMSyncSch Data Management - Transfer Schedule [empty]
DMGroupA
(valid until group
D)

Data Management - Select Tag groups A
to D

0 0 Disabled
1 Enabled

DMHTRel The time value of the data management
in an EBD
For example: $dtHL $st_XXX, $dtAH
$st_XXX

d1 Check the General Refer-
ence Guide for Export
Block Descriptor (RG-
0009).

DMOnAlarm Data Management - Upload on Alarm 0 0 Disabled
1 Enabled

DMSyncInt Data Management - Upload Interval 0 Integer [minutes]
NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 111 (128)

Name Description Default Value Acceptable Values
IOTcpDefTO Default TCP RX/TX timeout 1000 Integer [msec]
PlannerMaxTry Planner > Try action 0 Integer
PlannerRetryInt Planner > Action Retry Interval 60 Integer [minutes]
PlannerEntry1
(valid until entry
10)

Planner Timer Interval > Entry1 to 10
Example of valid entry:
0 0 * * 1
action to carry out every Monday
For more information check the General
Reference Guide corresponding to the
device

[empty] Syntax is the following:
mm = minutes (0-59)
hh = hours (0-23)
dd = day of the month (1-
31) MMM is the month (1-
12)DDD is day of week (1-
7)

PreRev6Compat Keep data compatible with firmware rev.
5.6 and before (tag quality).
Parameter can be set only in config.txt.

0 0 False
1 True

WizSysDone System Wizard Done
This is for Cosy 131 only

0 0 False
1 True

WizIOGWDone Gateway Wizard Done
This is for Cosy 131 only

0 0 False
1 True

IOGWSrvName NUA NUA NUA
ShowAdvOpt Enter maintenance mode

This is for Cosy 131 only
0 0 False

1 True
PutHttpPxyFile Proxy File

This file contains string arguments and is
appended to the body of a PUTHTTP.

“/usr/puthttp.
proxy”

Arguments formatted as
“aa=bb&cc=dd&...”

Language Language selection -1 -1 Not
configured

0 English
1 English
2 French
3 German

AlEmailTemplate AL Email Template: [empty] Text
AlSMSTemplate AL SMS Template: [empty] Text
ErrorMuteEnabled Prevent the flood of repetitive information

in the event log
0 0 Deactivated

1 Activated
HttpCertDir Path to the folder where custom certifi-

cates are stored
[empty] Path into the /usr folder

OpcuaEnabled Enable the OPCUA server of the device 0 0 Deactivated
1 Activated

OpcuaPort Port used by the OPCUA server 48020 Integer
OpcuaPublishTag-
sA
(valid until group
tag D)

Group(s) of tags that will be published 0 0 Group will not be
published

1 Group will be
published

OpcuaLoginType Which type of login the OPCUA server
should be using

0 0 Username /
Password

1 Anonymous
OpcuaVerboseLe-
vel

TBD TBD TB-
D

TBD

BackupSkipSD Should the content of “/usr/sdext” repre-
senting the SD card be integrated in the
backup

1 0 Don’t skip, integrate
the content in the
backup

1 Skip it, don’t inte-
grate the content in
the backup

NtpUpdateOn-
WANCnx

Update the date & time of the device on
each WAN establishing connection
NtpEnabled must be true.

1 0 Deactivated
1 Activated

SDEUMAutofor-
mat

Format the EUM card if the EUM repair
tool fails

0 0 Deactivated
1 Activated

NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 112 (128)

Name Description Default Value Acceptable Values
Learn more about the EUM autorepair in
the AUG-0069-00

OpcuaExportTagMode H-
ow
th-
e
O-
P-
C-
U-
A
cli-
e-
nt
s-
h-
o-
ul-
d
id-
e-
nt-
ify
th-
e
ta-
gs

10Export
TAGs by ID

1Export
TAGs by
name

NUA stands for “Not Used Anymore”.

6.2 COM
This section describes the fields found in the comcfg.txt file and that can be used with the
GETSYS and SETSYS.

6.2.1 COM Parameters
Name Description Default Value Acceptable Values
EthIP LAN IP address 10.0.0.53 IPv4 dotted decimal
EthMask LAN Subnet mask 255.255.255.0 IPv4 dotted decimal
EthGW Default gateway 0.0.0.0 IPv4 dotted decimal
UseBOOTP Type of LAN IP address 0 0 Static

1 BootP
2 DHCP

PPPServerIp PPP server IP address 202.0.0.240 IPv4 dotted decimal
PPPServerMask PPP server IP mask 255.255.255.0 IPv4 dotted decimal
PPPServerGW PPP server IP gateway 0.0.0.0 IPv4 dotted decimal
PPPClientIp PPP Client IP address 202.0.0.1 IPv4 dotted decimal
PPPClCom-
press

PPP Enable protocol
compression

1 0 Disabled
1 Enabled

PPPClPhone1 PPP Server1 phone
number

0 Phone number

PPPClUser-
Name1

PPP Server1 User name [empty] Text

RTEnIpFwrd Enable IP forwarding be-
tween IP interfaces

1 0 Disabled
1 Enabled

DialInOut PPP incoming Connection
and/or PPP outgoing
Connection

1 0 None
1 Incoming only
2 Outgoing only
3 Incoming & Outgoing

InEqualOut PPP Connected Client is a
Gateway

0 0 Disabled
1 Enabled

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 113 (128)

Name Description Default Value Acceptable Values
DialTO Dial-out time out 180 Integer [seconds]
ClIdle Client mode idle time out

before hangup
120 Integer [seconds]

SrvIdle Server mode idle time out
before hangup

240 Integer [seconds]

EthDns1 Ethernet DNS 1 IP
address

0.0.0.0 IPv4 dotted decimal

EthDns2 Ethernet DNS 2 IP
address

0.0.0.0 IPv4 dotted decimal

PPPSrvCom-
press

Enable PPP server
compression

1 0 Disabled
1 Enabled

PPPClNeed-
Chap

Enable CHAP
authentication

0 0 Disabled
1 Enabled

PPPClPhone2 ISP2 Server phone
number

0 Phone number

PPPClUser-
Name2

ISP2 User name [empty] Text

CallAlloc Allocated budget 24 Integer [hours]
CallAllocRst Budget reset period 168 Integer [hours]
CBEnabled Callback 0 0 Disabled

1 Enabled
CBDelay Callback delay after rings 30 Integer [seconds]
CBIdleTime Callback mode idle time

out before hangup
1200 Integer [seconds]

CBDDnsType Publish IP address Dy-
namic DNS Type

0 0 Disabled
1 No-IP.com
4 DynDns.org
7 Ods.org
8 Tzo.com
9 EasyDns.com
13 Dyns.cx
15 ZoneEdit.com

CBDDnsUName Publish IP address Dy-
namic DNS User Name

[empty] Text

CBDDnsHName Publish IP address Dy-
namic DNS Host Name

[empty] Text

CBDDnsDName Publish IP address Dy-
namic DNS Domain Name

[empty] Text

CBType Callback type 0 0 Disabled
1 Enabled

CBNbRing Callback detection mini-
mum number of rings

5 Integer [rings]

CBTo Phone number to use for
callback

1 0 User request account
1 Primary dialup
2 Secondary dialup

RTEnTransFw Enable transparent
forwarding

0 0 Disabled
1 Enabled

RTEnAuthRt Authentication for trans-
parent forwarding required

1 0 Disabled
1 Enabled

ModDetCnt Modem detection trial
count, if not detected after
this number eWON
reboots

4 Integer [trials]

ModExpType Modem expected type
(software)
(defines compatibility with
different modems – details
are listed in KB-0007)

Depends on HW
configuration.
0 = no modem

-1 Automatic
0 No modem
2 PSTN Multitech

33k

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 114 (128)

Name Description Default Value Acceptable Values
3 PSTN Multitech

56k
9 PSTN Multitech

33k LS
10 ISDN Stollman
11 PSTN Multitech

56k LS
12 ISDN Altec

5068S
131 GSM-GPRS-

QuadB
Wavecom All
Models

132 QuadBand
Siemens TC63,
TC65, AC65

133 QuadBand
Siemens
MC75, AC75

134 UMTS/GPRS
Quad
Telit All Models

135 Global HSUPA
ModFrcType Modem forced type

(software)
(defines compatibility with
different modems – details
are listed in KB-0007-00)

-1 -1 Automatic
0 No modem
Modem type

(see ModExp-
Type
parameter)

SSAM Server access selection
mode

0 -1 Use last valid
server

0 Return to serv-
er 1

1 Use only server
1

2 Use only server
2

CBNbRingOH Callback number of rings
more than minimum

10 Integer [rings]

RTDodType Accept dial on demand In-
ternet connection

0 0 NO ONE
except

1 ANYONE
except

RTDodF1..# Dial on demand exception
range 1..# FROM

0.0.0.0 IPv4 dotted decimal

RTDodT1..# Dial on demand exception
range 1..# TO

0.0.0.0 IPv4 dotted decimal

MaxCallDur Max outgoing call duration 60 Integer [minutes]
HUNoAct Hangup if no outgoing ac-

tion after
-1 0 Immediately

-1 After idle time [ClIdle]
Integer [minutes]

DOErrRst Dial out - reboot modem
after x outgoing call
failures

4 Integer [calls]

DORetryInt Dial out – delay between
retries

60 Integer [minutes]

X25Net Not documented 0
X25Usr Not documented [empty]
X25Facil Not documented [empty]
X25X121 Not documented [empty]

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 115 (128)

Name Description Default Value Acceptable Values
ModemInitStr Modem Init-String – Initiali-

zation AT Commands –
Modem-type dependent.
(For details: see KB-0007-
00)

[empty] if no modem,
otherwise
depends on modem
type as per ModExp-
Type parameter

Example PSTN
AT&FE1&Q5&K3&D2&C1
Example GSM
AT&FE0&D2&C1+IFC=2,2;
+CSNS=4
Example ISDN
AT&FE0&D&C1&K3B3

MemOrg Memory configuration –
Storage Configuration
(*) hardware dependent

1 1 See the General Refer-
ence Guide of the corre-
sponding device

2
3

PdpApnUse PDP context definition -
Packet Data Protocol Con-
text - Must be enabled in
order to use GPRS
connection.

0 0 Disabled
1 Enabled

PdpApn GPRS PDP access point
name

[empty] URL
(if PdpApnUse is enabled)

QosReqUse GPRS Quality Of Service
Profile (Requested)

0 See the General Reference Guide
of the corresponding device

QosReqPred precedence 0
QosReqDel delay 0
QosReqRel reliability 0
QosReqPk peak 0
QosReqMn mean 0
QosMinUse GPRS Quality Of Service

Profile (Minimum
Acceptable)

0 See the General Reference Guide
of the corresponding device

QosMinPred precedence 0
QosMinDel delay 0
QosMinRel reliability 0
QosMinPk peak 0
QosMinMn mean 0
IpsHttpP1 Primary HTTP port 80 Integer
IpsHttpP2 Secondary HTTP port 81 Integer
IpsFtpP FTP port 21 Integer
EthIpAddr2 WAN IP address 10.1.0.53 IPv4 dotted decimal
EthIpMask2 WAN Subnet mask 255.255.255.0 IPv4 dotted decimal
PPPAnswRing Number of rings before

modem answers
1 Integer [rings]

PPPSrvDia-
lInWD

Reset eWON
if no incoming connection
after...

0 Integer [hours]
0 Disable watchdog

UseBOOTP2 WAN IP address allocation 0 0 Static
1 BootP
2 DHCP

VPNRedirect Route all gateway traffic
through VPN

0 0 Disabled
1 Enabled

NatItf Apply NATand TF to con-
nection (listbox)

0 0 NATand TF disabled
1 NATand TF on VPN
2 NATand TF on WAN
3 NATon LAN

(Plug'nRoute)
TFMaxPort Highest transparent for-

warding port
10000 Integer

CBPubIP Callback Publish IP
address

0 0 Disabled
1 Enabled

WANItfProt WAN Protection level 2 1 Discard all except VPN
and initiated traffic

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 116 (128)

Name Description Default Value Acceptable Values
2 Allow all
3 Discard all except VPN,

initiated traffic and ping
WANCnx WAN Network connection 2 0 No access

1 Modem
2 Ethernet
3 ADSL
4 WIFI

WANPubIP WAN Publish IP address 0 0 Disabled
1 Enabled

WANRepubIn-
terval

WAN Re-publish interval 0 Integer [minutes]
0 Initial connection

WANPermCnx WAN Maintain connection 1 0 Disabled
1 Enabled

VPNCnxType VPN Connection type dur-
ing Internet connection:

0 0 Disabled
1 Incoming VPN
2 VPN to Server

VPNKeyType VPN connection type:
Connect to…:

0 0 Other eWON
1 VPN Server
2 eFive* VPN Server

*(or Endian)
VPNSecretKey VPN key #_1_//8= Text field
VPNSecretCert VPN certificate [empty] Text field
VPNCACert VPN Certificate Authority

(CA)
[empty] Text field

VPNDiag VPN Diagnosis level 1 0 None
1 Low
4 Medium
8 High

VPNPortIn VPN Port In 0 0 1194
Integer

VPNPortOut VPN Port Out 1194 Integer
VPNAlive VPN 'keep alive' interval 120 Integer [seconds]

0 Disabled
VPNSrv1 VPN Primary server [empty] IPv4 dotted decimal
VPNSrv2 VPN Secondary server [empty] IPv4 dotted decimal
PPPClNeed-
Chap2

Dial out require secure au-
thentication (CHAP) –
Server 2

0 0 Disabled
1 Enabled

CryptMode Encrypt sensitive data
(passwords, etc.)

1 0 Disabled
1 Enabled

VPNLocalIp VPN local IP address 10.254.0.1 IPv4 dotted decimal
VPNRemoteIp VPN remote IP address 10.254.0.2 IPv4 dotted decimal
PPPClPass-
word1

PPP server 1 password
(ISP1)

#_1_//8=
or [empty]

Text

PPPClPass-
word2

PPP server 2 password
(ISP2)

#_1_//8=
or [empty]

Text

CBDDnsPass Dynamic DNS password #_1_//8=
or [empty]

Text

VPNCfgFile External VPN config file (in
comcfg.txt only)
Syntax examples:

• + myVPNconfig.txt:
appends external
parameters

[empty] *.txt file name (free).
See KB-0018-00 for more details.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 117 (128)

Name Description Default Value Acceptable Values
• myVPNconfig.txt:

overwrites existing
parameters

VPNP2PIpMode VPN Ip addresses config 0 0 Automatic
1 Manual

BootOp Reboot request with spe-
cial operation

0 0 None
1 Modem Upgrade
32 Remote Wizard

ResSys Not documented 0
efAdmPass DefAdmPass (in comcfg.

txt only)
#_1_//8=
or [empty]

Text

EarlySerialCfg Serial port configuration at
power on and during boot
time (in comcfg.txt only)

[empty]

RouteDestIp1..3 Route 1..3 - Destination 0.0.0.0 IPv4 dotted decimal
RouteNet-
Mask1..3

Route 1..3 - Mask 0.0.0.0 IPv4 dotted decimal

RouteGate-
way1..3

Route 1..3 - Gateway 0.0.0.0 IPv4 dotted decimal

RouteHops1..3 Route 1..3 – Hop Counts 0 0 No hop
1 1 hop
2 2 hops
3 3 hops

CfgProtoDis Not documented 0
ProxyEnabled Proxy Configuration 0 0 Disabled

1 Enabled
ProxyIdleTO Proxy idle connection

timeout
180 Integer [seconds]

ProxyMaxSocks Proxy maximum connec-
tions sockets

5 Integer [sockets]

ProxyProto1..# Proxy 1..# protocol 0 0 Disabled
1 UDP
2 TCP
3 FTP

ProxySide1..# Proxy 1..# direction 0 0 Disabled
1 EXT to LAN
2 LAN to EXT

ProxyPort1..# Proxy 1..# incoming port 0 Integer max. 9 digits
ProxySrvPort1..
#

Proxy 1..# destination port 0 Integer max. 9 digits

ProxySrvI-
pAddr1..#

Proxy 1..# destination IP
address

0.0.0.0 IPv4 dotted decimal

GprsMinCnx-
Time

Minimum GPRS connec-
tion duration

4 Integer [seconds]

GprsCnxErrMax Reboot GPRS modem
after X connections shorter
than min. GPRS conn
(=GprsMinCnxTime).

5 Integer [connections]

NoSmartArp Not documented 0
VPNDrvMode VPN driver mode 0 0 TUN

1 TAP
VPNProto VPN Protocol 0 0 UDP

1 TCP
WANPxyMode WAN Proxy Mode (de-

tected automatically when
running Talk2M wizard)

0 0 No Proxy
1 Proxy with basic

authentication
2 Proxy with NTLM

authentication

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 118 (128)

Name Description Default Value Acceptable Values
10 Proxy without

authentication
WANPxyAddr WAN Proxy Address [empty] IPv4 dotted decimal
WANPxyUsr WAN Proxy User [empty] Text
WANPxyPass WAN Proxy Password #_1_//8= Text
WANPxyPort WAN Proxy Port 8080 Integer
GsmBand (in comcfg.txt only) 0

(Depends on modem
type – not applicable
for all GPRS modem
types)

0 Not specified
1 850
2 900
3 1800
4 1900
5 850 + 1900
6 900E + 1800
7 900E + 1900
10 Auto-detection

GsmOpId GSM operator selection
(Mobile Network Code)

0 0 Automatic
X 5 digit MNC

NetName Network name (FQDN) [empty] Text
DhcpTO DHCP time out. Applied

after reboot.
10000 Integer [milliseconds]

EthDnsAuto DNS automatic setup via
DHCP

1 0 Disabled
1 Enabled

AutoEthSw Not documented 0
ProxyExtItf Proxy external interface

(EXT)(linked to Proxy fea-
ture, ProxyProto1..#)

0 0 WAN
1 PPP
2 VPN

ModDispLvl Display reception level on
front panel LED

0 0 Disabled
1 Enabled

ModemMsn Multiple Subscriber Num-
bering - Phone number
(ISDN only)

[empty] Phone number

CBDnsDbg Debug Dynamic DNS
connection

0 0 Disabled
1 Enabled

AdslCnxType ADSL connection type
(list box 1 single option)

0 PPPoE or PPPoA

AdslPPPMode ADSL PPP mode 0 0 PPoE LLC
1 PPoAVC-Mux
2 PPoA LLC

AdslBridgeMode ADSL Bridge mode 0 0 Not bridged
AdslUser ADSL User name [empty] Text
AdslPass ADSL Password #_1_//8=

or [empty]
Text

AdslVPI ADSLVPI 8 Integer
AdslVCI ADSLVCI 35 Integer
AdslCloneMac Not documented 0
AdslCnxTO ADSL connection time out 180 Integer [seconds]
CBPubEMail Publish email destination

IP address
[empty] Email address

T2mAccSrvAddr Talk2M Access Server
Address

talk2m_pro URL

UserDefData1 Not documented [empty]
VPNSrvAddr-
Mode

VPN WAN address or
name

0 0 Defined manually
1 Defined by Talk2M

T2mAccount-
Name

Talk2M Account ID [empty] code

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 119 (128)

Name Description Default Value Acceptable Values
VPNPreDNS When set to 0, it allows to

force the use of the Server
name instead of the IP ad-
dress for the Talk2M con-
nection. If set to 1, Talk2M
Server IP Address is used
except when using Internet
Proxy.

1 0 and 1
Value 1 is highly advised in most
cases.

EnableChun-
kEncoding

Enable chunck encoding 0 0 Disabled
1 Enabled

PPPIdleWithOut PPP Idle time before
hanging up

0 0 Check incoming
1 Check Outgoing

FwrdToWAN WAN IP Forwarding. Allow
LAN and VPN forwarding
to WAN

1 0 Disabled
1 Enabled

VPNOptPck Not documented 0
KillLAN Special mode which dis-

ables the eWON LAN con-
nection. Only modem
connection possible on
eWON if this feature is
activated.

0 0 Disabled
1 Enabled

eBuddyAuth eBuddy needs
authentication

0 0 Disabled
1 Enabled

VpnFltEn VPN protection 0 0 Disabled
1 Enabled

VpnFSa1..3 VPN protection source IP
1..3

0.0.0.0 IPv4 dotted decimal

VpnFDaS1..3 VPN protection destination
IP range start 1..3

0.0.0.0 IPv4 dotted decimal

VpnFDaE1..3 VPN protection destination
IP range end 1..3

0.0.0.0 IPv4 dotted decimal

VpnFDp1..3 VPN protection destination
port

[empty] Integer

PIN Modem PIN code #_1_//8=
or [empty]

4 digit code

WirelessNet Wireless network
preferences

Depends on modem 0 WCDMA/GSM
1 WCDMA only
2 GSM only

WizICnxDone COSY 1-2-3 wizard
completion
Flag connection part

Ex-factory = 0
Afterward = 1

0 Not completed
1 Completed

WizT2MDone COSY 1-2-3 wizard
completion
Flag Talk2M part

Ex-factory = 0
Afterward = 1

0 Not completed
1 Completed

WizVPNDone COSY 1-2-3 wizard
completion
Flag VPN part

Ex-factory = 0
Afterward = 1

0 Not completed
1 Completed

InIOCfg COSY 1-2-3 wizard com-
pletion - PLC Gateway
configuration
Starting firmware v12.3,
this parameter is depre-
cated. See .

0 0 Disabled
1 Enabled

Language Language configuration -1 -1 Not configured. Will ask
for config at first login.

0 English
1 English
2 French
3 German
4 Italian

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 120 (128)

Name Description Default Value Acceptable Values
5 Spanish

HComCfg1 Internal Use - -

HComCfg2 Internal Use - -

HComCfg3 Internal Use - -

HComCfg4 Internal Use - -

HComCfg5 Internal Use - -

HComCfg6 Internal Use - -

HComCfg7 Internal Use - -

HComCfg8 Internal Use - -

HBoard1 Internal Use - -
HBoard2 Internal Use - -
HBoard3 Internal Use - -
HBoard4 Internal Use - -
HBoard5 Internal Use - -
HBoard6 Internal Use - -
HBoard7 Internal Use - -
HBoard8 Internal Use - -
LANWANConfig Cosy 131 Switch

Configuration.
The bits set indicate the
WAN Ports. The bits reset
indicate the LAN ports.
LAN Port #1 cannot be set
as a WAN port

8 8 Port 4 in WAN
4 Port 3 in WAN
2 Port 2 in WAN
12 Port 4,3 in WAN
14 Port 4,3,2 in WAN
6 Port 3,2 in WAN
10 Port 2,4 in WAN
0 All 4 Ports in LAN

WifiSSID Wifi SSID (Wifi name) of
the Wifi to connect.

[empty] Wifi SSID

WifiIpAddr Wifi IP address 0.0.0.0 IPv4 dotted decimal
WifiIpMask Wifi IP Subnet mask 0.0.0.0 IPv4 dotted decimal
WifiUseDHCP Wifi DHCP Settings 2 0 Static

1 BOOTP
2 DHCP

UseCAL Use of Cloud Accelerated
Loading. CAL is the fea-
ture that allows your web
browser to download the
eWONWeb static files
from the Internet instead of
from the eWON.

1 0 Disabled
1 Enabled

WifiPSK PSK Key for WIFI
connection

[empty] Wifi PSK

WifiSec WIFI Security 0 0 Automatic
1 No Protection
2 WPA/WPA2
3 WEP

DO1Init Base Unit DO #1 init value 1 0 Status 0
1 Status 1

UsbIPEnable Enable/Disable the USB
over IP

1 0 Disabled
1 Enabled

UsbIpLogLevel Log Level of USB IP 0 0 No log
1 Low Level
2 High Level

UsbIpStartPort TCP Port used for access-
ing the first USB device
connected to your eWON.

6000 Port number

UsbIpPwd Password protection for
accessing your USB

[empty] Password

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 121 (128)

Name Description Default Value Acceptable Values
device. Not supported by
eCatcher.

NAT11Itf NAT1:1 interface 0 0 Disabled
1 VPN
2 WAN

NAT11InX (X =
1...10)

NAT 1:1 LAN IP for entry
1...10

0.0.0.0 IPv4 dotted decimal

NAT11OutX (X =
1...10)

NAT 1:1 MAPPED IP for
entry 1...10

0.0.0.0 IPv4 dotted decimal

NAT11NickX (X
= 1...10)

NAT 1:1 Nickname for en-
try 1...10

[empty] Any name

WifiGW Wifi Gateway IP address 0.0.0.0 IPv4 dotted decimal
WifiDns1 Wifi DNS1 IP address 0.0.0.0 IPv4 dotted decimal
WifiDns2 Wifi DNS2 IP address 0.0.0.0 IPv4 dotted decimal
WifiDnsAuto Wifi DNS automatic setup

via DHCP
1 0 Disabled

1 Enabled
WifiNetName Wifi network name

(FQDN)
[empty] Text

T2MKey Global Registration Key
used when registering the
eWON on Talk2M through
SD card.

[empty] Cannot be set without SD card.

T2MNote Description used when
registering the eWON on
Talk2M through SD card.

[empty] Cannot be set without SD card.

GeolocEnable Enable/Disable the Geo-
localization

1 0 Disabled
1 Enabled

SDConfigEnable Enable/Disable the SD
card configuration.

1 0 Disabled
1 Enabled

LANDHCPSEn-
able

Enable/Disable DHCP
Server on LAN.

0 0 Disabled
1 Enabled

LAND-
HCPSStartIP

Start IP address of the Dy-
namic IP address pool.
This IP address must be in
the range of eWON

0.0.0.0 IPv4 dotted decimal

LANDHCPSEn-
dIP

End IP address of the Dy-
namic IP address pool

0.0.0.0 IPv4 dotted decimal

LANDHCPSLo-
gLevel

Log level of the DHCP
server (0,1 or2).

0 0, 1 or 2

LANDHCPSDn-
s1

Primary DNS IP address
attributed to DHCP Clients.
Do not set the eWON LAN
IP address since eWON is
not a DNS gateway.
Use a public DNS server
or the corporate LAN DNS
Server.

0.0.0.0 IPv4 dotted decimal

LANDHCPSDn-
s2

Secondary DNS IP ad-
dress attributed to DHCP
Clients. Same as above.

0.0.0.0 IPv4 dotted decimal

DNSREnabled Enable DNS relay. 0 0 Disa-
bled

1 Ena-
bled

BroadcastFor-
warder

Enable PLC Discovery. 0 0 Disa-
bled

1 Ena-
bled

DHCPRTO DHCP client retries
timeout.
The time interval before a
DHCP request is sent
again inside the interval.

1000 Integer [milliseconds]

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 122 (128)

Name Description Default Value Acceptable Values
T2MCheckCnx-
MinT

Minimum time interval con-
sidered to test the Talk2M
VPN connection and
switch port (TCP or UDP)
accordingly.
This time interval is
doubled after each test
failure until maximum time
interval is reached.

120 Integer [seconds]

T2MCheckCnx-
MaxT

Maximum time interval
considered to test the
Talk2M VPN connection
and switch port (TCP or
UDP) accordingly.

3600 Integer [seconds]

WiFiAutoscan Automatic scan of Wi-Fi
network / hotspots in order
to connect to the strongest
signal.

1 0 Disabled
1 Enabled

DI1A-
larmSMSMsg

DI1 SMS body.
Between 1 and 134 ASCII
characters

[empty] String

DI1AlarmSMS-
Recipients

DI1 SMS notification recip-
ient list.
Separated by comma (,) if
multiple recipients; no “+”
allowed, between 4 and 40
characters.

[empty] String

DI1AlarmEmail-
Body

DI1 email notification mes-
sage body
Maximum 140 characters.

[empty] String

DI1AlarmEmail-
Recipients

DI1 email notification re-
cipient list.
Separated by comma (,) if
multiple recipients.

[empty] String

DI1AlarmEmail-
Subject

DI1 email notification mes-
sage subject.
Maximum 44 characters.

[empty] String

DI2A-
larmSMSMsg

DI2 SMS body.
Between 1 and 134 ASCII
characters

[empty] String

DI2AlarmSMS-
Recipients

DI2 SMS notification recip-
ient list.
Separated by comma (,) if
multiple recipients; no “+”
allowed, between 4 and 40
characters.

[empty] String

DI2AlarmEmail-
Body

DI2 email notification mes-
sage body.
Maximum 140 characters.

[empty] String

DI2AlarmEmail-
Recipients

DI2 email notification re-
cipient list.
Seperated by comma (,).

[empty] String

DI2AlarmEmail-
Subject

DI2 email notification mes-
sage subject.
Maximum 44 characters.

[empty] String

DI1Cfg COSY 1-2-3 wizard
completion
Contains the DI1 configu-
ration as a bit field

0 0 Not used
1 Internet control
2 VPN control
4 SMS

notification
8 Email

notification
Values can be summed except for
1 with 2.
For eg: 1+4+8 = 13 : Internet con-
trol with SMS and email
notification

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 123 (128)

Name Description Default Value Acceptable Values
DI2Cfg COSY 1-2-3 wizard

completion
Contains the DI2 configu-
ration as a bit field

0 0 Not used
4 SMS

notification
8 Email

notification
Values can be summed.
For eg: 4+8 = 12 : SMS and email
notification

WizDIDone COSY 1-2-3 wizard
completion
Flag DI part

Ex-factory = 0
Afterward = 1

0 Not done
1 Completed

WANFbckHost-
NamesToCheck

List of hosts used to check
if the WAN connection is
still active (for WAN fall-
back purpose).
Separated by comma (,)
with a maximum of 96
characters.

tcp://device.api.talk2m.
com:443

PROTOCOL://HOST:PORT

WANFbck-
MaxCnxRetries

Number of retries used to
check the WAN connec-
tion before falling back to
secondary WAN interface.

3 Integer
1 No retry

WANFbckMax-
Duration

Maximum time duration
the secondary WAN inter-
face will stay active before
testing back the primary
WAN interface.

60 Integer [minutes]

WANFbckMinIn-
terval

Minimum time interval be-
fore another WAN fallback
can occur after a previous
one has already been
triggered.

75 Integer [minutes]

WANFbckCnx Defines the secondary
WAN interface (in case of
WAN fallback).

0 0 None
1 Cellular
2 Ethernet
4 Wi-Fi

WANFbck-
CheckPeriod

The time interval between
two WAN connectivity
checks on the primary
WAN interface (for WAN
fallback purpose).

60 Integer [minutes]

6.3 TAG
This section describes the fields found in the config.txt file and that can be used with the
GETSYS and SETSYS.

6.3.1 TAG Parameters
Name Description Default

Value
Acceptable Values

Id Tag#, defined internally by the eWON NA Integer, first tag is 1, numbers of de-
leted tags are not re-used

Name Tag name [empty] Text
Description Tag description [empty] Text
ServerName Name of the server which delivers the

tag value
[empty] One of the servers available in the

eWON. Examples: EWON, MEM,
DF1, etc..

TopicName Name of the topic the tag is part of [empty] A, B or C
Address Address in the IO server TagName Register associated with the IO serv-

er.Example: F8:9

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 124 (128)

Name Description Default
Value

Acceptable Values

Coef Coefficient by which the IO server de-
livered value is multiplied

'1.000000 Float

Offset Offset added to the IO server deliv-
ered value

0.000000 Float

LogEnabled Historical Logging enable 0 0 Disabled
1 Enabled

AlEnabled Alarm enabled 0 0 Disabled
1 Enabled

Type Type of variable 0 0 Boolean
1 Floating Point
2 Integer
3 DWord

AlBool Alarm level (for Boolean tags) 0 0 Alarm on 0
1 Alarm on 1

MemTag Is tag a memory tag ? 0 0 False
1 True

MbsTcpEna-
bled

Publish tag in Modbus TCP 0 0 False
1 True

MbsTcpFloat Publish tag in Modbus TCP 32 Bit for-
mat (would the value come from two
consecutive registers)

0 0 Disabled
1 Enabled

SnmpEnabled SNMP tag accessibility 0 0 Disabled
1 Enabled

RTLogEnabled Real-time logging enabled 0 0 False
1 True

AlAutoAck Alarm auto acknowledgment 0 0 Disabled
1 Enabled

ForceRO Force tag read-only 0 0 Disabled
1 Enabled

SnmpOID SNMP tag publication ID
This is the last part of the whole chain.

1 Integer

AutoType Automatic detection of variable type 0 0 Disabled
1 Enabled

AlHint Alarm hint [empty] Text
AlHigh Alarm level high 0 Floating point
AlLow Alarm level low 0 Floating point
AlTimeDB Alarm Delay (time deadband) 0 Integer (seconds)
AlLevelDB Alarm Value deadband 0 Floating point
IVGroupA to D Instant Value Group A to D

(allows to filter extractions)
[not
selected]

0 False
1 True

PageId Index of the user page the tag is part
of

1 1 to 10

RTLogWindow Time span (period logged for real-time
logging)

600 Integer [seconds]

RTLogTimer Real-time logging interval (in
seconds)

10 Integer [seconds]

LogDB Historical logging deadband (do not
log if value change is less than …)

-1 -1 Disabled
Floating point

LogTimer Historical logging interval (in seconds)
(value stored cyclically)

0 0 Not stored
cyclically

Integer [seconds]
AlLoLo Alarm Level LowLow [empty] Floating point
AlHiHi Alarm Level HighHigh [empty] Floating point
MbsTcpRegis-
ter

Register by which the tag is published
in Modbus TCP

1 Integer

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 125 (128)

Name Description Default
Value

Acceptable Values

MbsTcpCoef Coefficient by which the tag value is
multiplied before being published to
Modbus TCP

1 Floating point

MbsTcpOffset Offset added to the tag value before
…

0 Floating point

EEN* Enable Email 0 Check “Send On Alarm” Notification
Patterns, p. 126

ETO Email alarm recipient(s) [empty] Email addresses separated by a
coma.

ECC Email alarm carbon-copy recipient(s) [empty] Email addresses separated by a
coma.

ESU Email alarm subject [empty] Text
EAT Email alarm attachment [empty] An Export Block Descriptor
ESH Enable Email sent as SMS 0 0 False

1 True
SEN* Enable SMS 0 Check “Send On Alarm” Notification

Patterns, p. 126

STO SMS alarm recipient [empty] Check the General Reference Guide
of the corresponding device for SMS
number syntax.

SSU SMS alarm subject [empty] Text
TEN* Enable trap (SNMP) 0 Check “Send On Alarm” Notification

Patterns, p. 126

TSU* Trap (SNMP) subject [empty] SNMP syntax
FEN* Enable FTP 0 Check “Send On Alarm” Notification

Patterns, p. 126

FFN FTP destination file name [empty] Text
FCO FTP file content [empty] An Export Block Descriptor
AIStat Alarm status 0 0 No alarm

1 Pretrigger
2 ALM
3 ACK
4 RTN
5 END

ChangeTime Last change time
This is a read only parameter

[empty] Date / time

TagValue Tag current value
This is a read only parameter

0 Value of the tag

TagQuality Quality of the tag
This is a read only parameter

N/A Integer [bits]
Check KB-0039-00 for more details.

AIType Alarm Status of the tag
This is a read only parameter

N/A 0 No alarm
1 Warning level

HIGH
2 Warning level

LOW
3 Boolean alarm

level
4 Alarm level HIGH

HIGH
5 Alarm level LOW

LOW
DoDelete Delete the tag

This is a write only parameter
N/A 0 Don’t delete

1 Delete
DoAck Acknowledge the tag

This is a write only parameter
N/A 0 Don’t

acknowledge
1 Acknowledge

DoSetVal Ability or not to modify the value of the
tags
This is a write only parameter

N/A 0 False
1 True

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 126 (128)

“Send On Alarm” Notification Patterns
Several tag alarm parameters can have different values based on the type(s) of alarm status
the device should notify. These parameters are EEN, SEN, TEN, FEN

Values of Alarm Types
ALM ACK RTN END Values

0
X 8

X 16
X 32

X 2

If multiple status need to be selected, their values are added. For example, if “ALM” and “END”
should trigger a notification by SMS, the value of the SEN parameter will be 10.

6.3.2 Examples
Set a tag value

Example 131: Set a Tag Value

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "TAGVALUE", 1234
SETSYS TAG, "DoSetVal", 1
SETSYS TAG, "SAVE"

Example 132: Acknowledge an Alarm

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "DoAck", 1
SETSYS TAG, "SAVE"

Example 133: Add a Tag

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "Name", "New_TagName"
SETSYS TAG, "Address", "New_address"
SETSYS TAG, "SAVE"
CFGSAVE // This writes configuration to flash

Example 134: Delete a Tag

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "DoDelete", 1
SETSYS TAG, "SAVE"
CFGSAVE // This writes configuration to flash

6.4 USER
This section describes the fields found in the config.txt file and that can be used with the
GETSYS and SETSYS.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

Configuration Fields 127 (128)

6.4.1 USER Parameters
Name Description Default Value Acceptable Values
Id Sequential user number

(generated automatically)
1 Integer

FirstName User First Name [empty] Text [20]
LastName User Last Name [empty] Text [24]
Login User Login adm Text [20]
Password User Password adm Text [24]
Information User Free Text [empty] Text
Right User permissions All

(usr adm)
View IO, Force Outputs,
Acknowledge Alarms,
Change Configuration,
FTP server access,
eWON Files access [EBD],
Java Forms access,
Control JAVA JVM.

EMA NUA NUA NUA
SMS NUA NUA NUA
AccessPage User right to access tag

pages
All Default, System, ...

AccessDir User right to access user
directories

All Default, System, ...

CBEn User callback 0 0 Disabled
1 Enabled

CBMode User callback phone number
value is

0 0 Mandatory
1 User defined

CBPhNum User callback phone number [empty] Phone number
DoDelete Delete the user N/A 0 Don’t delete

1 Delete
NUA stands for “Not Used Anymore”.

Programming Reference Guide Reference Guide RG-0006-01-EN 1.2

last page

© 2018 HMS Industrial Networks AB
Box 4126
300 04 Halmstad, Sweden

info@hms.se RG-0006-01-EN 1.2.8405 / 2018-05-03

	1 Preface
	1.1 About This Document
	1.2 Document history
	1.3 Related Documents
	1.4 Trademark Information

	2 BASIC language definition
	2.1 Introduction
	2.2 Program Flow
	2.2.1 Character String
	2.2.2 Command
	2.2.3 Integer
	2.2.4 Real
	2.2.5 Alphanumeric Character

	2.3 Function
	2.3.1 Function Declaration
	2.3.2 Function return value
	2.3.3 Keyword return inside Functions
	2.3.4 Function Parameters
	2.3.5 Function Call
	2.3.6 Passing Arguments by Reference
	2.3.7 Recursive Function Call

	2.4 Label
	2.4.1 Local Label

	2.5 Operators Priority
	2.6 Types of Variable
	2.6.1 Integer Variable
	2.6.2 Real Variable
	2.6.3 Alphanumeric String
	2.6.4 Character Arrays
	2.6.5 Real Arrays
	2.6.6 Local Variables

	2.7 TagName Variable
	2.8 Tag Access
	2.9 Limitation of the BASIC

	3 List of Keywords
	3.1 # (bit extraction operator)
	3.2 // (comment)
	3.3 ABS
	3.4 ALMACK
	3.5 ALSTAT
	3.6 AND
	3.7 ASCII26
	3.8 BIN$
	3.9 BNOT
	3.10 CFGSAVE
	3.11 CHR$
	3.12 CLEAR
	3.13 CLOSE
	3.14 CLS
	3.15 DAY
	3.16 DEC
	3.17 DIM
	3.18 DMSYNC
	3.19 DOW
	3.20 DOY
	3.21 DYNDNS
	3.22 END
	3.23 EOF
	3.24 ERASE
	3.25 FCNV
	3.25.1 Convert from an IEEE Float Representation
	3.25.2 Compute CRC16 of a String
	3.25.3 Compute LRC of a String
	3.25.4 Compute from an Integer Representation
	3.25.5 Convert String to a Float Using an SFormat Specifier
	3.25.6 Convert String to an Interger Using an SFormat Specifier
	3.25.7 Convert Time as String into Time as Integer

	3.26 FOR - NEXT - STEP
	3.27 GET
	3.27.1 /usr in Binary Mode
	3.27.2 /usr in Text Mode
	3.27.3 COM in Binary Mode
	3.27.4 TCP/UDP in Binary Mode

	3.28 GETFTP
	3.29 GETHTTP
	3.30 GETIO
	3.31 GETSYS, SETSYS
	3.31.1 Procedure
	3.31.2 Parameter Type: PRG
	3.31.3 Parameter Type: SYS
	3.31.4 Parameter Type: COM
	3.31.5 Parameter Type: INF
	3.31.6 Parameter Type: TAG
	3.31.7 USER

	3.32 GO
	3.33 GOSUB - RETURN
	3.34 GOTO
	3.35 HALT
	3.36 HEX$
	3.37 HTTPX
	3.37.1 REQUESTHTTPX
	3.37.2 RESPONSEHTTPX

	3.38 IF, THEN, ELSE, ENDIF
	3.38.1 Short Syntax
	3.38.2 Long Syntax

	3.39 INSTR
	3.40 INT
	3.41 IOMOD
	3.42 IORCV
	3.43 IOSEND
	3.44 LEN
	3.45 LOGEVENT
	3.46 LOGGROUPIO
	3.47 LOGIO
	3.48 LTRIM
	3.49 MEMORY
	3.50 MOD
	3.51 MONTH
	3.52 MQTT
	3.52.1 OPEN
	3.52.2 SETPARAM
	3.52.3 CONNECT
	3.52.4 CLOSE
	3.52.5 STATUS
	3.52.6 PUBLISH
	3.52.7 SUBSCRIBE
	3.52.8 READ
	3.52.9 MSGTOPIC
	3.52.10 MSGDATA

	3.53 NOT
	3.54 NTPSYNC
	3.55 ONxxxxxx
	3.55.1 ONALARM
	3.55.2 ONCHANGE
	3.55.3 ONDATE
	3.55.4 ONERROR
	3.55.5 ONMQTT
	3.55.6 ONMQTTSTATUS
	3.55.7 ONPPP
	3.55.8 ONSMS
	3.55.9 ONSTATUS
	3.55.10 ONTIMER
	3.55.11 ONVPN
	3.55.12 ONWAN

	3.56 OPEN
	3.56.1 File OPEN /usr
	3.56.2 TCP or UDP Stream OPEN
	3.56.3 COM Port OPEN
	3.56.4 Export Block Descriptor OPEN

	3.57 OR
	3.58 PI
	3.59 PRINT – AT
	3.60 PRINT #
	3.61 PUT
	3.61.1 File – Binar Mode
	3.61.2 File – Text Mode
	3.61.3 COM – Binary Mode
	3.61.4 TCP/UDP – Binary Mode

	3.62 PUTFTP
	3.63 PUTHTTP
	3.64 REBOOT
	3.65 REM
	3.66 RENAME
	3.67 RTRIM
	3.68 SENDMAIL
	3.69 SENDSMS
	3.70 SENDTRAP
	3.71 SETIO
	3.72 SETTIME
	3.73 SFMT
	3.73.1 Convert Float to an IEEE Representation
	3.73.2 Compute an Integer to a String
	3.73.3 Convert a Float to a String using an SFormat Specifier
	3.73.4 Convert an Integer to a String using an SFormat Specifier
	3.73.5 Convert Time as Integer into Time as String

	3.74 SGN
	3.75 SQRT
	3.76 STR$
	3.77 TIME$
	3.78 TGET
	3.79 TSET
	3.80 TYPE$
	3.81 VAL
	3.82 WAIT
	3.83 WOY
	3.84 WRITEEBD
	3.85 XOR

	4 Debugging
	5 BASIC Error Codes
	6 Configuration Fields
	6.1 SYS
	6.1.1 SYS Parameters

	6.2 COM
	6.2.1 COM Parameters

	6.3 TAG
	6.3.1 TAG Parameters
	6.3.2 Examples

	6.4 USER
	6.4.1 USER Parameters

